Featured Researches

Information Theory

MIMO Interference Channels Assisted by Reconfigurable Intelligent Surfaces: Mutual Coupling Aware Sum-Rate Optimization Based on a Mutual Impedance Channel Model

We investigate a multi-user multiple-input multiple-output interference network in the presence of multiple reconfigurable intelligent surfaces (RISs). The entire system is described by using a circuit-based model for the transmitters, receivers, and RISs. This is obtained by leveraging the electromagnetic tool of mutual impedances, which accounts for the signal propagation and the mutual coupling among closely-spaced scattering elements. An iterative and provably convergent optimization algorithm that maximizes the sum-rate of RIS-assisted multi-user interference channels is introduced. Numerical results show that the sum-rate is enhanced if the mutual coupling among the elements of the RISs is accounted for at the optimization stage.

Read more
Information Theory

Machine Learning for User Partitioning and Phase Shifters Design in RIS-Aided NOMA Networks

A novel reconfigurable intelligent surface (RIS) aided non-orthogonal multiple access (NOMA) downlink transmission framework is proposed. We formulate a long-term stochastic optimization problem that involves a joint optimization of NOMA user partitioning and RIS phase shifting, aiming at maximizing the sum data rate of the mobile users (MUs) in NOMA downlink networks. To solve the challenging joint optimization problem, we invoke a modified object migration automation (MOMA) algorithm to partition the users into equal-size clusters. To optimize the RIS phase-shifting matrix, we propose a deep deterministic policy gradient (DDPG) algorithm to collaboratively control multiple reflecting elements (REs) of the RIS. Different from conventional training-then-testing processing, we consider a long-term self-adjusting learning model where the intelligent agent is capable of learning the optimal action for every given state through exploration and exploitation. Extensive numerical results demonstrate that: 1) The proposed RIS-aided NOMA downlink framework achieves an enhanced sum data rate compared with the conventional orthogonal multiple access (OMA) framework. 2) The proposed DDPG algorithm is capable of learning a dynamic resource allocation policy in a long-term manner. 3) The performance of the proposed RIS-aided NOMA framework can be improved by increasing the granularity of the RIS phase shifts. The numerical results also show that reducing the granularity of the RIS phase shifts and increasing the number of REs are two efficient methods to improve the sum data rate of the MUs.

Read more
Information Theory

Machine Learning-Enabled Joint Antenna Selection and Precoding Design: From Offline Complexity to Online Performance

We investigate the performance of multi-user multiple-antenna downlink systems in which a BS serves multiple users via a shared wireless medium. In order to fully exploit the spatial diversity while minimizing the passive energy consumed by radio frequency (RF) components, the BS is equipped with M RF chains and N antennas, where M < N. Upon receiving pilot sequences to obtain the channel state information, the BS determines the best subset of M antennas for serving the users. We propose a joint antenna selection and precoding design (JASPD) algorithm to maximize the system sum rate subject to a transmit power constraint and QoS requirements. The JASPD overcomes the non-convexity of the formulated problem via a doubly iterative algorithm, in which an inner loop successively optimizes the precoding vectors, followed by an outer loop that tries all valid antenna subsets. Although approaching the (near) global optimality, the JASPD suffers from a combinatorial complexity, which may limit its application in real-time network operations. To overcome this limitation, we propose a learning-based antenna selection and precoding design algorithm (L-ASPA), which employs a DNN to establish underlaying relations between the key system parameters and the selected antennas. The proposed L-ASPD is robust against the number of users and their locations, BS's transmit power, as well as the small-scale channel fading. With a well-trained learning model, it is shown that the L-ASPD significantly outperforms baseline schemes based on the block diagonalization and a learning-assisted solution for broadcasting systems and achieves higher effective sum rate than that of the JASPA under limited processing time. In addition, we observed that the proposed L-ASPD can reduce the computation complexity by 95% while retaining more than 95% of the optimal performance.

Read more
Information Theory

Maddah-Ali-Niesen Scheme for Multi-access Coded Caching

The well known Maddah-Ali-Niesen (MAN) coded caching scheme for users with dedicated cache is extended for use in multi-access coded cache scheme where the number of users need not be same as the number of caches in the system. The well known MAN scheme is recoverable as a special case of the multi-access system considered. The performance of this scheme is compared with the existing works on multi-access coded caching. To be able to compare the performance of different multi-access schemes with different number of users for the same number of caches, the terminology of per user rate (rate divided by the number of users) introduced in \cite{KNS} is used.

Read more
Information Theory

Massive MIMO under Double Scattering Channels: Power Minimization and Congestion Controls

This paper considers a massive MIMO system under the double scattering channels. We derive a closed-form expression of the uplink ergodic spectral efficiency (SE) by exploiting the maximum-ratio combining technique with imperfect channel state information. We then formulate and solve a total uplink data power optimization problem that aims at simultaneously satisfying the required SEs from all the users with limited power resources. We further propose algorithms to cope with the congestion issue appearing when at least one user is served by lower SE than requested. Numerical results illustrate the effectiveness of our proposed power optimization. More importantly, our proposed congestion-handling algorithms can guarantee the required SEs to many users under congestion, even when the SE requirement is high.

Read more
Information Theory

Massive Random Access with Sporadic Short Packets: Joint Active User Detection and Channel Estimation via Sequential Message Passing

This paper considers an uplink massive machine-type communication (mMTC) scenario, where a large number of user devices are connected to a base station (BS). A novel grant-free massive random access (MRA) strategy is proposed, considering both the sporadic user traffic and short packet features. Specifically, the notions of active detection time (ADT) and active detection period (ADP) are introduced so that active user detection can be performed multiple times within one coherence time. By taking sporadic user traffic and short packet features into consideration, we model the joint active user detection and channel estimation issue into a dynamic compressive sensing (CS) problem with the underlying sparse signals exhibiting substantial temporal correlation. This paper builds a probabilistic model to capture the temporal structure and establishes a corresponding factor graph. A novel sequential approximate message passing (S-AMP) algorithm is designed to sequentially perform inference and recover sparse signal from one ADT to the next. The Bayes active user detector and the corresponding channel estimator are then derived. Numerical results show that the proposed S-AMP algorithm enhances active user detection and channel estimation performances over competing algorithms under our scenario.

Read more
Information Theory

Max-Min Fair Hybrid Precoding for Multi-group Multicasting in Millimeter-Wave Channel

The potential of using millimeter-wave (mmWave) to encounter the current bandwidth shortage has motivated packing more antenna elements in the same physical size which permits the advent of massive multiple-input-multiple-output (MIMO) for mmWave communication. However, with increasing number of antenna elements, the ability of allocating a single RF-chain per antenna becomes infeasible and unaffordable. As a cost-effective alternative, the design of hybrid precoding has been considered where the limited-scattering signals are captured by a high-dimensional RF precoder realized by an analog phase-shifter network followed by a low-dimensional digital precoder at baseband. In this paper, the max-min fair problem is considered to design a low-complexity hybrid precoder for multi-group multicasting systems in mmWave channels. The problem is non-trivial due to two main reasons: the original max-min problem for multi-group multicasting for a fully-digital precoder is non-convex, and the analog precoder places constant modules constraint which restricts the feasible set of the precoders in the design problem. Therefore, we consider a low complexity hybrid precoder design to tackle and benefit from the mmWave channel structure. Each analog beamformer was designed to maximize the minimum matching component for users within a given group. Once obtained, the digital precoder was attained by solving the max-min problem of the equivalent channel.

Read more
Information Theory

Max-Min Fairness Based on Cooperative-NOMA Clustering for Ultra-Reliable and Low-Latency Communications

In this paper, the performance of a cooperative relaying technique in a non-orthogonal multiple access (NOMA) system, briefly named cooperative NOMA (C-NOMA), is considered in short packet communications with finite blocklength (FBL) codes. We examine the performance of a decode-and-forward (DF) relaying along with selection combining (SC) and maximum ratio combining (MRC) strategies at the receiver. Our goal is user clustering based on C-NOMA to maximize fair throughput in a DL-NOMA scenario. In each cluster, the user with a stronger channel (strong user) acts as a relay for the other one (weak user), and optimal power and blocklength are allocated to achieve max-min throughput.

Read more
Information Theory

Max-log APP Detection for Non-bijective Symbol Constellations

A posteriori probability (APP) and max-log APP detection is widely used in soft-input soft-output detection. In contrast to bijective modulation schemes, there are important differences when applying these algorithms to non-bijective symbol constellations. In this letter the main differences are highlighted.

Read more
Information Theory

Mean-Based Trace Reconstruction over Practically any Replication-Insertion Channel

Mean-based reconstruction is a fundamental, natural approach to worst-case trace reconstruction over channels with synchronization errors. It is known that exp(O( n 1/3 )) traces are necessary and sufficient for mean-based worst-case trace reconstruction over the deletion channel, and this result was also extended to certain channels combining deletions and geometric insertions of uniformly random bits. In this work, we use a simple extension of the original complex-analytic approach to show that these results are examples of a much more general phenomenon: exp(O( n 1/3 )) traces suffice for mean-based worst-case trace reconstruction over any memoryless channel that maps each input bit to an arbitrarily distributed sequence of replications and insertions of random bits, provided the length of this sequence follows a sub-exponential distribution.

Read more

Ready to get started?

Join us today