Featured Researches

Information Theory

Capacity-Achieving Private Information Retrieval Schemes from Uncoded Storage Constrained Servers with Low Sub-packetization

This paper investigates reducing sub-packetization of capacity-achieving schemes for uncoded Storage Constrained Private Information Retrieval (SC-PIR) systems. In the SC-PIR system, a user aims to retrieve one out of K files from N servers while revealing nothing about its identity to any individual server, in which the K files are stored at the N servers in an uncoded form and each server can store up to μK equivalent files, where μ is the normalized storage capacity of each server. We first prove that there exists a capacity-achieving SC-PIR scheme for a given storage design if and only if all the packets are stored exactly at M?�μN servers for μ such that M=μN?�{2,3,??N} . Then, the optimal sub-packetization for capacity-achieving linear SC-PIR schemes is characterized as the solution to an optimization problem, which is typically hard to solve because of involving indicator functions. Moreover, a new notion of array called Storage Design Array (SDA) is introduced for the SC-PIR system. With any given SDA, an associated capacity-achieving SC-PIR scheme is constructed. Next, the SC-PIR schemes that have equal-size packets are investigated. Furthermore, the optimal equal-size sub-packetization among all capacity-achieving linear SC-PIR schemes characterized by Woolsey et al. is proved to be N(M??) gcd(N,M) . Finally, by allowing unequal size of packets, a greedy SDA construction is proposed, where the sub-packetization of the associated SC-PIR scheme is upper bounded by N(M??) gcd(N,M) . Among all capacity-achieving linear SC-PIR schemes, the sub-packetization is optimal when min{M,N?�M}|N or M=N , and within a multiplicative gap min{M,N?�M} gcd(N,M) of the optimal one otherwise. In particular, for the case N=d?�M±1 where d?? , another SDA is constructed to obtain lower sub-packetization.

Read more
Information Theory

Centralized & Distributed Deep Reinforcement Learning Methods for Downlink Sum-Rate Optimization

For a multi-cell, multi-user, cellular network downlink sum-rate maximization through power allocation is a nonconvex and NP-hard optimization problem. In this paper, we present an effective approach to solving this problem through single- and multi-agent actor-critic deep reinforcement learning (DRL). Specifically, we use finite-horizon trust region optimization. Through extensive simulations, we show that we can simultaneously achieve higher spectral efficiency than state-of-the-art optimization algorithms like weighted minimum mean-squared error (WMMSE) and fractional programming (FP), while offering execution times more than two orders of magnitude faster than these approaches. Additionally, the proposed trust region methods demonstrate superior performance and convergence properties than the Advantage Actor-Critic (A2C) DRL algorithm. In contrast to prior approaches, the proposed decentralized DRL approaches allow for distributed optimization with limited CSI and controllable information exchange between BSs while offering competitive performance and reduced training times.

Read more
Information Theory

Centralized and Distributed Age of Information Minimization with non-linear Aging Functions in the Internet of Things

Resource management in Internet of Things (IoT) systems is a major challenge due to the massive scale and heterogeneity of the IoT system. For instance, most IoT applications require timely delivery of collected information, which is a key challenge for the IoT. In this paper, novel centralized and distributed resource allocation schemes are proposed to enable IoT devices to share limited communication resources and to transmit IoT messages in a timely manner. In the considered system, the timeliness of information is captured using non-linear age of information (AoI) metrics that can naturally quantify the freshness of information. To model the inherent heterogeneity of the IoT system, the non-linear aging functions are defined in terms of IoT device types and message content. To minimize AoI, the proposed resource management schemes allocate the limited communication resources considering AoI. In particular, the proposed centralized scheme enables the base station to learn the device types and to determine aging functions. Moreover, the proposed distributed scheme enables the devices to share the limited communication resources based on available information on other devices and their AoI. The convergence of the proposed distributed scheme is proved, and the effectiveness in reducing the AoI with partial information is analyzed. Simulation results show that the proposed centralized scheme achieves significantly lower average instantaneous AoI when compared to simple centralized allocation without learning, while the proposed distributed scheme achieves significantly lower average instantaneous AoI when compared to random allocation. The results also show that the proposed centralized scheme outperforms the proposed distributed scheme in almost all cases, but the distributed approach is more viable for a massive IoT.

Read more
Information Theory

Channel Estimation and Data Decoding Analysis of Massive MIMO with 1-Bit ADCs

We present an analytical framework for the channel estimation and the data decoding in massive multiple-input multiple-output uplink systems with 1-bit analog-to-digital converters (ADCs). First, we provide a closed-form expression of the mean squared error of the channel estimation for a general class of linear estimators. In addition, we propose a novel linear estimator with significantly enhanced performance compared with existing estimators with the same structure. For the data decoding, we provide closed-form expressions of the expected value and the variance of the estimated symbols when maximum ratio combining is adopted, which can be exploited to efficiently implement maximum likelihood decoding and, potentially, to design the set of transmit symbols. Comprehensive numerical results are presented to study the performance of the channel estimation and the data decoding with 1-bit ADCs with respect to the signal-to-noise ratio (SNR), the number of user equipments, and the pilot length. The proposed analysis highlights a fundamental SNR trade-off, according to which operating at the right noise level significantly enhances the system performance.

Read more
Information Theory

Channel Estimation and Hybrid Combining for Wideband Terahertz Massive MIMO Systems

Terahertz (THz) communication is widely considered as a key enabler for future 6G wireless systems. However, THz links are subject to high propagation losses and inter-symbol interference due to the frequency selectivity of the channel. Massive multiple-input multiple-output (MIMO) along with orthogonal frequency division multiplexing (OFDM) can be used to deal with these problems. Nevertheless, when the propagation delay across the base station (BS) antenna array exceeds the symbol period, the spatial response of the BS array varies across the OFDM subcarriers. This phenomenon, known as beam squint, renders narrowband combining approaches ineffective. Additionally, channel estimation becomes challenging in the absence of combining gain during the training stage. In this work, we address the channel estimation and hybrid combining problems in wideband THz massive MIMO with uniform planar arrays. Specifically, we first introduce a low-complexity beam squint mitigation scheme based on true-time-delay. Next, we propose a novel variant of the popular orthogonal matching pursuit (OMP) algorithm to accurately estimate the channel with low training overhead. Our channel estimation and hybrid combining schemes are analyzed both theoretically and numerically. Moreover, the proposed schemes are extended to the multi-antenna user case. Simulation results are provided showcasing the performance gains offered by our design compared to standard narrowband combining and OMP-based channel estimation.

Read more
Information Theory

Channel Estimation for RIS Assisted Wireless Communications: Part I -- Fundamentals, Solutions, and Future Opportunities

The reconfigurable intelligent surface (RIS) with low hardware cost and energy consumption has been recognized as a potential technique for future 6G communications to enhance coverage and capacity. To achieve this goal, accurate channel state information (CSI) in RIS assisted wireless communication system is essential for the joint beamforming at the base station (BS) and the RIS. However, channel estimation is challenging, since a large number of passive RIS elements cannot transmit, receive, or process signals. In the first part of this invited paper, we provide an overview of the fundamentals, solutions, and future opportunities of channel estimation in the RIS assisted wireless communication system. It is noted that a new channel estimation scheme with low pilot overhead will be provided in the second part of this paper.

Read more
Information Theory

Channel Estimation for RIS Assisted Wireless Communications: Part II -- An Improved Solution Based on Double-Structured Sparsity

Reconfigurable intelligent surface (RIS) can manipulate the wireless communication environment by controlling the coefficients of RIS elements. However, due to the large number of passive RIS elements without signal processing capability, channel estimation in RIS assisted wireless communication system requires high pilot overhead. In the second part of this invited paper, we propose to exploit the double-structured sparsity of the angular cascaded channels among users to reduce the pilot overhead. Specifically, we first reveal the double-structured sparsity, i.e., different angular cascaded channels for different users enjoy the completely common non-zero rows and the partially common non-zero columns. By exploiting this double-structured sparsity, we further propose the double-structured orthogonal matching pursuit (DS-OMP) algorithm, where the completely common non-zero rows and the partially common non-zero columns are jointly estimated for all users. Simulation results show that the pilot overhead required by the proposed scheme is lower than existing schemes.

Read more
Information Theory

Channel Matching: An Adaptive Technique to Increase the Accuracy of Soft Decisions

Nonlinear interference is modeled by a time-varying conditionally Gaussian channel. It is shown that approximating this channel with a time-invariant channel imposes considerable loss in the performance of channel decoding. An adaptive method to maintain decoding performance is described.

Read more
Information Theory

Channel Measurement and Ray-Tracing-Statistical Hybrid Modeling for Low-Terahertz Indoor Communications

TeraHertz (THz) communications are envisioned as a promising technology, owing to its unprecedented multi-GHz bandwidth. One fundamental challenge when moving to new spectrum is to understand the science of radio propagation and develop an accurate channel model. In this paper, a wideband channel measurement campaign between 130 GHz and 143 GHz is investigated in a typical meeting room. Directional antennas are utilized and rotated for resolving the multi-path components (MPCs) in the angular domain. With careful system calibration that eliminates system errors and antenna effects, a realistic power delay profile is developed. Furthermore, a combined MPC clustering and matching procedure with ray-tracing techniques is proposed to investigate the cluster behavior and wave propagation of THz signals. In light of the measurement results, physical parameters and insights in the THz indoor channel are comprehensively analyzed, including the line-of-sight path loss, power distributions, temporal and spatial features, and correlations among THz multi-path characteristics. Finally, a hybrid channel model that combines ray-tracing and statistical methods is developed for THz indoor communications. Numerical results demonstrate that the proposed hybrid channel model shows good agreement with the measurement and outperforms the conventional statistical and geometric-based stochastic channel model in terms of the temporal-spatial characteristics.

Read more
Information Theory

Classical simulations of communication channels

We investigate whether certain non-classical communication channels can be simulated by a classical channel with a given number of states and a given amount of noise. It is proved that any noisy quantum channel can be simulated by the corresponding noisy classical channel. General probabilistic channels are also studied.

Read more

Ready to get started?

Join us today