Featured Researches

Audio And Speech Processing

A Global-local Attention Framework for Weakly Labelled Audio Tagging

Weakly labelled audio tagging aims to predict the classes of sound events within an audio clip, where the onset and offset times of the sound events are not provided. Previous works have used the multiple instance learning (MIL) framework, and exploited the information of the whole audio clip by MIL pooling functions. However, the detailed information of sound events such as their durations may not be considered under this framework. To address this issue, we propose a novel two-stream framework for audio tagging by exploiting the global and local information of sound events. The global stream aims to analyze the whole audio clip in order to capture the local clips that need to be attended using a class-wise selection module. These clips are then fed to the local stream to exploit the detailed information for a better decision. Experimental results on the AudioSet show that our proposed method can significantly improve the performance of audio tagging under different baseline network architectures.

Read more
Audio And Speech Processing

A Hybrid Approach to Audio-to-Score Alignment

Audio-to-score alignment aims at generating an accurate mapping between a performance audio and the score of a given piece. Standard alignment methods are based on Dynamic Time Warping (DTW) and employ handcrafted features. We explore the usage of neural networks as a preprocessing step for DTW-based automatic alignment methods. Experiments on music data from different acoustic conditions demonstrate that this method generates robust alignments whilst being adaptable at the same time.

Read more
Audio And Speech Processing

A Joint Framework for Audio Tagging and Weakly Supervised Acoustic Event Detection Using DenseNet with Global Average Pooling

This paper proposes a network architecture mainly designed for audio tagging, which can also be used for weakly supervised acoustic event detection (AED). The proposed network consists of a modified DenseNet as the feature extractor, and a global average pooling (GAP) layer to predict frame-level labels at inference time. This architecture is inspired by the work proposed by Zhou et al., a well-known framework using GAP to localize visual objects given image-level labels. While most of the previous works on weakly supervised AED used recurrent layers with attention-based mechanism to localize acoustic events, the proposed network directly localizes events using the feature map extracted by DenseNet without any recurrent layers. In the audio tagging task of DCASE 2017, our method significantly outperforms the state-of-the-art method in F1 score by 5.3% on the dev set, and 6.0% on the eval set in terms of absolute values. For weakly supervised AED task in DCASE 2018, our model outperforms the state-of-the-art method in event-based F1 by 8.1% on the dev set, and 0.5% on the eval set in terms of absolute values, by using data augmentation and tri-training to leverage unlabeled data.

Read more
Audio And Speech Processing

A Machine of Few Words -- Interactive Speaker Recognition with Reinforcement Learning

Speaker recognition is a well known and studied task in the speech processing domain. It has many applications, either for security or speaker adaptation of personal devices. In this paper, we present a new paradigm for automatic speaker recognition that we call Interactive Speaker Recognition (ISR). In this paradigm, the recognition system aims to incrementally build a representation of the speakers by requesting personalized utterances to be spoken in contrast to the standard text-dependent or text-independent schemes. To do so, we cast the speaker recognition task into a sequential decision-making problem that we solve with Reinforcement Learning. Using a standard dataset, we show that our method achieves excellent performance while using little speech signal amounts. This method could also be applied as an utterance selection mechanism for building speech synthesis systems.

Read more
Audio And Speech Processing

A Modulation-Domain Loss for Neural-Network-based Real-time Speech Enhancement

We describe a modulation-domain loss function for deep-learning-based speech enhancement systems. Learnable spectro-temporal receptive fields (STRFs) were adapted to optimize for a speaker identification task. The learned STRFs were then used to calculate a weighted mean-squared error (MSE) in the modulation domain for training a speech enhancement system. Experiments showed that adding the modulation-domain MSE to the MSE in the spectro-temporal domain substantially improved the objective prediction of speech quality and intelligibility for real-time speech enhancement systems without incurring additional computation during inference.

Read more
Audio And Speech Processing

A New Approach to Accent Recognition and Conversion for Mandarin Chinese

Two new approaches to accent classification and conversion are presented and explored, respectively. The first topic is Chinese accent classification/recognition. The second topic is the use of encoder-decoder models for end-to-end Chinese accent conversion, where the classifier in the first topic is used for the training of the accent converter encoder-decoder model. Experiments using different features and model are performed for accent recognition. These features include MFCCs and spectrograms. The classifier models were TDNN and 1D-CNN. On the MAGICDATA dataset with 5 classes of accents, the TDNN classifier trained on MFCC features achieved a test accuracy of 54% and a test F1 score of 0.54 while the 1D-CNN classifier trained on spectrograms achieve a test accuracy of 62% and a test F1 score of 0.62. A prototype of an end-to-end accent converter model is also presented. The converter model comprises of an encoder and a decoder. The encoder model converts an accented input into an accent-neutral form. The decoder model converts an accent-neutral form to an accented form with the specified accent assigned by the input accent label. The converter prototype preserves the tone and foregoes the details in the output audio. An encoder-decoder structure demonstrates the potential of being an effective accent converter. A proposal for future improvements is also presented to address the issue of lost details in the decoder output.

Read more
Audio And Speech Processing

A New Dataset for Amateur Vocal Percussion Analysis

The imitation of percussive instruments via the human voice is a natural way for us to communicate rhythmic ideas and, for this reason, it attracts the interest of music makers. Specifically, the automatic mapping of these vocal imitations to their emulated instruments would allow creators to realistically prototype rhythms in a faster way. The contribution of this study is two-fold. Firstly, a new Amateur Vocal Percussion (AVP) dataset is introduced to investigate how people with little or no experience in beatboxing approach the task of vocal percussion. The end-goal of this analysis is that of helping mapping algorithms to better generalise between subjects and achieve higher performances. The dataset comprises a total of 9780 utterances recorded by 28 participants with fully annotated onsets and labels (kick drum, snare drum, closed hi-hat and opened hi-hat). Lastly, we conducted baseline experiments on audio onset detection with the recorded dataset, comparing the performance of four state-of-the-art algorithms in a vocal percussion context.

Read more
Audio And Speech Processing

A Perceptually-Motivated Approach for Low-Complexity, Real-Time Enhancement of Fullband Speech

Over the past few years, speech enhancement methods based on deep learning have greatly surpassed traditional methods based on spectral subtraction and spectral estimation. Many of these new techniques operate directly in the the short-time Fourier transform (STFT) domain, resulting in a high computational complexity. In this work, we propose PercepNet, an efficient approach that relies on human perception of speech by focusing on the spectral envelope and on the periodicity of the speech. We demonstrate high-quality, real-time enhancement of fullband (48 kHz) speech with less than 5% of a CPU core.

Read more
Audio And Speech Processing

A Pyramid Recurrent Network for Predicting Crowdsourced Speech-Quality Ratings of Real-World Signals

The real-world capabilities of objective speech quality measures are limited since current measures (1) are developed from simulated data that does not adequately model real environments; or they (2) predict objective scores that are not always strongly correlated with subjective ratings. Additionally, a large dataset of real-world signals with listener quality ratings does not currently exist, which would help facilitate real-world assessment. In this paper, we collect and predict the perceptual quality of real-world speech signals that are evaluated by human listeners. We first collect a large quality rating dataset by conducting crowdsourced listening studies on two real-world corpora. We further develop a novel approach that predicts human quality ratings using a pyramid bidirectional long short term memory (pBLSTM) network with an attention mechanism. The results show that the proposed model achieves statistically lower estimation errors than prior assessment approaches, where the predicted scores strongly correlate with human judgments.

Read more
Audio And Speech Processing

A Real-time Robot-based Auxiliary System for Risk Evaluation of COVID-19 Infection

In this paper, we propose a real-time robot-based auxiliary system for risk evaluation of COVID-19 infection. It combines real-time speech recognition, temperature measurement, keyword detection, cough detection and other functions in order to convert live audio into actionable structured data to achieve the COVID-19 infection risk assessment function. In order to better evaluate the COVID-19 infection, we propose an end-to-end method for cough detection and classification for our proposed system. It is based on real conversation data from human-robot, which processes speech signals to detect cough and classifies it if detected. The structure of our model are maintained concise to be implemented for real-time applications. And we further embed this entire auxiliary diagnostic system in the robot and it is placed in the communities, hospitals and supermarkets to support COVID-19 testing. The system can be further leveraged within a business rules engine, thus serving as a foundation for real-time supervision and assistance applications. Our model utilizes a pretrained, robust training environment that allows for efficient creation and customization of customer-specific health states.

Read more

Ready to get started?

Join us today