Featured Researches

Image And Video Processing

Big Self-Supervised Models Advance Medical Image Classification

Self-supervised pretraining followed by supervised fine-tuning has seen success in image recognition, especially when labeled examples are scarce, but has received limited attention in medical image analysis. This paper studies the effectiveness of self-supervised learning as a pretraining strategy for medical image classification. We conduct experiments on two distinct tasks: dermatology skin condition classification from digital camera images and multi-label chest X-ray classification, and demonstrate that self-supervised learning on ImageNet, followed by additional self-supervised learning on unlabeled domain-specific medical images significantly improves the accuracy of medical image classifiers. We introduce a novel Multi-Instance Contrastive Learning (MICLe) method that uses multiple images of the underlying pathology per patient case, when available, to construct more informative positive pairs for self-supervised learning. Combining our contributions, we achieve an improvement of 6.7% in top-1 accuracy and an improvement of 1.1% in mean AUC on dermatology and chest X-ray classification respectively, outperforming strong supervised baselines pretrained on ImageNet. In addition, we show that big self-supervised models are robust to distribution shift and can learn efficiently with a small number of labeled medical images.

Read more
Image And Video Processing

Binary segmentation of medical images using implicit spline representations and deep learning

We propose a novel approach to image segmentation based on combining implicit spline representations with deep convolutional neural networks. This is done by predicting the control points of a bivariate spline function whose zero-set represents the segmentation boundary. We adapt several existing neural network architectures and design novel loss functions that are tailored towards providing implicit spline curve approximations. The method is evaluated on a congenital heart disease computed tomography medical imaging dataset. Experiments are carried out by measuring performance in various standard metrics for different networks and loss functions. We determine that splines of bidegree (1,1) with 128?128 coefficient resolution performed optimally for 512?512 resolution CT images. For our best network, we achieve an average volumetric test Dice score of almost 92%, which reaches the state of the art for this congenital heart disease dataset.

Read more
Image And Video Processing

Blind Image Denoising and Inpainting Using Robust Hadamard Autoencoders

In this paper, we demonstrate how deep autoencoders can be generalized to the case of inpainting and denoising, even when no clean training data is available. In particular, we show how neural networks can be trained to perform all of these tasks simultaneously. While, deep autoencoders implemented by way of neural networks have demonstrated potential for denoising and anomaly detection, standard autoencoders have the drawback that they require access to clean data for training. However, recent work in Robust Deep Autoencoders (RDAEs) shows how autoencoders can be trained to eliminate outliers and noise in a dataset without access to any clean training data. Inspired by this work, we extend RDAEs to the case where data are not only noisy and have outliers, but also only partially observed. Moreover, the dataset we train the neural network on has the properties that all entries have noise, some entries are corrupted by large mistakes, and many entries are not even known. Given such an algorithm, many standard tasks, such as denoising, image inpainting, and unobserved entry imputation can all be accomplished simultaneously within the same framework. Herein we demonstrate these techniques on standard machine learning tasks, such as image inpainting and denoising for the MNIST and CIFAR10 datasets. However, these approaches are not only applicable to image processing problems, but also have wide ranging impacts on datasets arising from real-world problems, such as manufacturing and network processing, where noisy, partially observed data naturally arise.

Read more
Image And Video Processing

Blind Image Restoration with Flow Based Priors

Image restoration has seen great progress in the last years thanks to the advances in deep neural networks. Most of these existing techniques are trained using full supervision with suitable image pairs to tackle a specific degradation. However, in a blind setting with unknown degradations this is not possible and a good prior remains crucial. Recently, neural network based approaches have been proposed to model such priors by leveraging either denoising autoencoders or the implicit regularization captured by the neural network structure itself. In contrast to this, we propose using normalizing flows to model the distribution of the target content and to use this as a prior in a maximum a posteriori (MAP) formulation. By expressing the MAP optimization process in the latent space through the learned bijective mapping, we are able to obtain solutions through gradient descent. To the best of our knowledge, this is the first work that explores normalizing flows as prior in image enhancement problems. Furthermore, we present experimental results for a number of different degradations on data sets varying in complexity and show competitive results when comparing with the deep image prior approach.

Read more
Image And Video Processing

Blind Image Super-Resolution with Spatial Context Hallucination

Deep convolution neural networks (CNNs) play a critical role in single image super-resolution (SISR) since the amazing improvement of high performance computing. However, most of the super-resolution (SR) methods only focus on recovering bicubic degradation. Reconstructing high-resolution (HR) images from randomly blurred and noisy low-resolution (LR) images is still a challenging problem. In this paper, we propose a novel Spatial Context Hallucination Network (SCHN) for blind super-resolution without knowing the degradation kernel. We find that when the blur kernel is unknown, separate deblurring and super-resolution could limit the performance because of the accumulation of error. Thus, we integrate denoising, deblurring and super-resolution within one framework to avoid such a problem. We train our model on two high quality datasets, DIV2K and Flickr2K. Our method performs better than state-of-the-art methods when input images are corrupted with random blur and noise.

Read more
Image And Video Processing

Blind stain separation using model-aware generative learning and its applications on fluorescence microscopy images

Multiple stains are usually used to highlight biological substances in biomedical image analysis. To decompose multiple stains for co-localization quantification, blind source separation is usually performed. Prior model-based stain separation methods usually rely on stains' spatial distributions over an image and may fail to solve the co-localization problem. With the advantage of machine learning, deep generative models are used for this purpose. Since prior knowledge of imaging models is ignored in purely data-driven solutions, these methods may be sub-optimal. In this study, a novel learning-based blind source separation framework is proposed, where the physical model of biomedical imaging is incorporated to regularize the learning process. The introduced model-relevant adversarial loss couples all generators in the framework and limits the capacities of the generative models. Further more, a training algorithm is innovated for the proposed framework to avoid inter-generator confusion during learning. This paper particularly takes fluorescence unmixing in fluorescence microscopy images as an application example of the proposed framework. Qualitative and quantitative experimentation on a public fluorescence microscopy image set demonstrates the superiority of the proposed method over both prior model-based approaches and learning-based methods.

Read more
Image And Video Processing

Boosting Segmentation Performance across datasets using histogram specification with application to pelvic bone segmentation

Accurate segmentation of the pelvic CTs is crucial for the clinical diagnosis of pelvic bone diseases and for planning patient-specific hip surgeries. With the emergence and advancements of deep learning for digital healthcare, several methodologies have been proposed for such segmentation tasks. But in a low data scenario, the lack of abundant data needed to train a Deep Neural Network is a significant bottle-neck. In this work, we propose a methodology based on modulation of image tonal distributions and deep learning to boost the performance of networks trained on limited data. The strategy involves pre-processing of test data through histogram specification. This simple yet effective approach can be viewed as a style transfer methodology. The segmentation task uses a U-Net configuration with an EfficientNet-B0 backbone, optimized using an augmented BCE-IoU loss function. This configuration is validated on a total of 284 images taken from two publicly available CT datasets, TCIA (a cancer imaging archive) and the Visible Human Project. The average performance measures for the Dice coefficient and Intersection over Union are 95.7% and 91.9%, respectively, give strong evidence for the effectiveness of the approach, which is highly competitive with state-of-the-art methodologies.

Read more
Image And Video Processing

Brain Tumor Segmentation and Survival Prediction using Automatic Hard mining in 3D CNN Architecture

We utilize 3-D fully convolutional neural networks (CNN) to segment gliomas and its constituents from multimodal Magnetic Resonance Images (MRI). The architecture uses dense connectivity patterns to reduce the number of weights and residual connections and is initialized with weights obtained from training this model with BraTS 2018 dataset. Hard mining is done during training to train for the difficult cases of segmentation tasks by increasing the dice similarity coefficient (DSC) threshold to choose the hard cases as epoch increases. On the BraTS2020 validation data (n = 125), this architecture achieved a tumor core, whole tumor, and active tumor dice of 0.744, 0.876, 0.714,respectively. On the test dataset, we get an increment in DSC of tumor core and active tumor by approximately 7%. In terms of DSC, our network performances on the BraTS 2020 test data are 0.775, 0.815, and 0.85 for enhancing tumor, tumor core, and whole tumor, respectively. Overall survival of a subject is determined using conventional machine learning from rediomics features obtained using a generated segmentation mask. Our approach has achieved 0.448 and 0.452 as the accuracy on the validation and test dataset.

Read more
Image And Video Processing

Brain Tumor Segmentation using 3D-CNNs with Uncertainty Estimation

Automation of brain tumors in 3D magnetic resonance images (MRIs) is key to assess the diagnostic and treatment of the disease. In recent years, convolutional neural networks (CNNs) have shown improved results in the task. However, high memory consumption is still a problem in 3D-CNNs. Moreover, most methods do not include uncertainty information, which is specially critical in medical diagnosis. This work proposes a 3D encoder-decoder architecture, based on V-Net \cite{vnet} which is trained with patching techniques to reduce memory consumption and decrease the effect of unbalanced data. We also introduce voxel-wise uncertainty, both epistemic and aleatoric using test-time dropout and data-augmentation respectively. Uncertainty maps can provide extra information to expert neurologists, useful for detecting when the model is not confident on the provided segmentation.

Read more
Image And Video Processing

Brain Tumor Survival Prediction using Radiomics Features

Surgery planning in patients diagnosed with brain tumor is dependent on their survival prognosis. A poor prognosis might demand for a more aggressive treatment and therapy plan, while a favorable prognosis might enable a less risky surgery plan. Thus, accurate survival prognosis is an important step in treatment planning. Recently, deep learning approaches have been used extensively for brain tumor segmentation followed by the use of deep features for prognosis. However, radiomics-based studies have shown more promise using engineered/hand-crafted features. In this paper, we propose a three-step approach for multi-class survival prognosis. In the first stage, we extract image slices corresponding to tumor regions from multiple magnetic resonance image modalities. We then extract radiomic features from these 2D slices. Finally, we train machine learning classifiers to perform the classification. We evaluate our proposed approach on the publicly available BraTS 2019 data and achieve an accuracy of 76.5% and precision of 74.3% using the random forest classifier, which to the best of our knowledge are the highest reported results yet. Further, we identify the most important features that contribute in improving the prediction.

Read more

Ready to get started?

Join us today