Featured Researches

Image And Video Processing

A Hitchhiker's Guide to Structural Similarity

The Structural Similarity (SSIM) Index is a very widely used image/video quality model that continues to play an important role in the perceptual evaluation of compression algorithms, encoding recipes and numerous other image/video processing algorithms. Several public implementations of the SSIM and Multiscale-SSIM (MS-SSIM) algorithms have been developed, which differ in efficiency and performance. This "bendable ruler" makes the process of quality assessment of encoding algorithms unreliable. To address this situation, we studied and compared the functions and performances of popular and widely used implementations of SSIM, and we also considered a variety of design choices. Based on our studies and experiments, we have arrived at a collection of recommendations on how to use SSIM most effectively, including ways to reduce its computational burden.

Read more
Image And Video Processing

A Lightweight Structure Aimed to Utilize Spatial Correlation for Sparse-View CT Reconstruction

Sparse-view computed tomography (CT) is known as a widely used approach to reduce radiation dose while accelerating imaging through lowered projection views and correlated calculations. However, its severe imaging noise and streaking artifacts turn out to be a major issue in the low dose protocol. In this paper, we propose a dual-domain deep learning-based method that breaks through the limitations of currently prevailing algorithms that merely process single image slices. Since the scanned object usually contains a high degree of spatial continuity, the obtained consecutive imaging slices embody rich information that is largely unexplored. Therefore, we establish a cascade model named LS-AAE which aims to tackle the above problem. In addition, in order to adapt to the social trend of lightweight medical care, our model adopts the inverted residual with linear bottleneck in the module design to make it mobile and lightweight (reduce model parameters to one-eighth of its original) without sacrificing its performance. In our experiments, sparse sampling is conducted at intervals of 4°, 8° and 16°, which appears to be a challenging sparsity that few scholars have attempted before. Nevertheless, our method still exhibits its robustness and achieves the state-of-the-art performance by reaching the PSNR of 40.305 and the SSIM of 0.948, while ensuring high model mobility. Particularly, it still exceeds other current methods when the sampling rate is one-fourth of them, thereby demonstrating its remarkable superiority.

Read more
Image And Video Processing

A Multi-Scale Conditional Deep Model for Tumor Cell Ratio Counting

We propose a method to accurately obtain the ratio of tumor cells over an entire histological slide. We use deep fully convolutional neural network models trained to detect and classify cells on images of H&E-stained tissue sections. Pathologists' labels consisting of exhaustive nuclei locations and tumor regions were used to trained the model in a supervised fashion. We show that combining two models, each working at a different magnification allows the system to capture both cell-level details and surrounding context to enable successful detection and classification of cells as either tumor-cell or normal-cell. Indeed, by conditioning the classification of a single cell on a multi-scale context information, our models mimic the process used by pathologists who assess cell neoplasticity and tumor extent at different microscope magnifications. The ratio of tumor cells can then be readily obtained by counting the number of cells in each class. To analyze an entire slide, we split it into multiple tiles that can be processed in parallel. The overall tumor cell ratio can then be aggregated. We perform experiments on a dataset of 100 slides with lung tumor specimens from both resection and tissue micro-array (TMA). We train fully-convolutional models using heavy data augmentation and batch normalization. On an unseen test set, we obtain an average mean absolute error on predicting the tumor cell ratio of less than 6%, which is significantly better than the human average of 20% and is key in properly selecting tissue samples for recent genetic panel tests geared at prescribing targeted cancer drugs. We perform ablation studies to show the importance of training two models at different magnifications and to justify the choice of some parameters, such as the size of the receptive field.

Read more
Image And Video Processing

A Multi-Stage Attentive Transfer Learning Framework for Improving COVID-19 Diagnosis

Computed tomography (CT) imaging is a promising approach to diagnosing the COVID-19. Machine learning methods can be employed to train models from labeled CT images and predict whether a case is positive or negative. However, there exists no publicly-available and large-scale CT data to train accurate models. In this work, we propose a multi-stage attentive transfer learning framework for improving COVID-19 diagnosis. Our proposed framework consists of three stages to train accurate diagnosis models through learning knowledge from multiple source tasks and data of different domains. Importantly, we propose a novel self-supervised learning method to learn multi-scale representations for lung CT images. Our method captures semantic information from the whole lung and highlights the functionality of each lung region for better representation learning. The method is then integrated to the last stage of the proposed transfer learning framework to reuse the complex patterns learned from the same CT images. We use a base model integrating self-attention (ATTNs) and convolutional operations. Experimental results show that networks with ATTNs induce greater performance improvement through transfer learning than networks without ATTNs. This indicates attention exhibits higher transferability than convolution. Our results also show that the proposed self-supervised learning method outperforms several baseline methods.

Read more
Image And Video Processing

A Mutual Reference Shape for Segmentation Fusion and Evaluation

This paper proposes the estimation of a mutual shape from a set of different segmentation results using both active contours and information theory. The mutual shape is here defined as a consensus shape estimated from a set of different segmentations of the same object. In an original manner, such a shape is defined as the minimum of a criterion that benefits from both the mutual information and the joint entropy of the input segmentations. This energy criterion is justified using similarities between information theory quantities and area measures, and presented in a continuous variational framework. In order to solve this shape optimization problem, shape derivatives are computed for each term of the criterion and interpreted as an evolution equation of an active contour. A mutual shape is then estimated together with the sensitivity and specificity of each segmentation. Some synthetic examples allow us to cast the light on the difference between the mutual shape and an average shape. The applicability of our framework has also been tested for segmentation evaluation and fusion of different types of real images (natural color images, old manuscripts, medical images).

Read more
Image And Video Processing

A New Approach for Automatic Segmentation and Evaluation of Pigmentation Lesion by using Active Contour Model and Speeded Up Robust Features

Digital image processing techniques have wide applications in different scientific fields including the medicine. By use of image processing algorithms, physicians have been more successful in diagnosis of different diseases and have achieved much better treatment results. In this paper, we propose an automatic method for segmenting the skin lesions and extracting features that are associated to them. At this aim, a combination of Speeded-Up Robust Features (SURF) and Active Contour Model (ACM), is used. In the suggested method, at first region of skin lesion is segmented from the whole skin image, and then some features like the mean, variance, RGB and HSV parameters are extracted from the segmented region. Comparing the segmentation results, by use of Otsu thresholding, our proposed method, shows the superiority of our procedure over the Otsu theresholding method. Segmentation of the skin lesion by the proposed method and Otsu thresholding compared the results with physician's manual method. The proposed method for skin lesion segmentation, which is a combination of SURF and ACM, gives the best result. For empirical evaluation of our method, we have applied it on twenty different skin lesion images. Obtained results confirm the high performance, speed and accuracy of our method.

Read more
Image And Video Processing

A New Screening Method for COVID-19 based on Ocular Feature Recognition by Machine Learning Tools

The Coronavirus disease 2019 (COVID-19) has affected several million people. With the outbreak of the epidemic, many researchers are devoting themselves to the COVID-19 screening system. The standard practices for rapid risk screening of COVID-19 are the CT imaging or RT-PCR (real-time polymerase chain reaction). However, these methods demand professional efforts of the acquisition of CT images and saliva samples, a certain amount of waiting time, and most importantly prohibitive examination fee in some countries. Recently, some literatures have shown that the COVID-19 patients usually accompanied by ocular manifestations consistent with the conjunctivitis, including conjunctival hyperemia, chemosis, epiphora, or increased secretions. After more than four months study, we found that the confirmed cases of COVID-19 present the consistent ocular pathological symbols; and we propose a new screening method of analyzing the eye-region images, captured by common CCD and CMOS cameras, could reliably make a rapid risk screening of COVID-19 with very high accuracy. We believe a system implementing such an algorithm should assist the triage management or the clinical diagnosis. To further evaluate our algorithm and approved by the Ethics Committee of Shanghai public health clinic center of Fudan University, we conduct a study of analyzing the eye-region images of 303 patients (104 COVID-19, 131 pulmonary, and 68 ocular patients), as well as 136 healthy people. Remarkably, our results of COVID-19 patients in testing set consistently present similar ocular pathological symbols; and very high testing results have been achieved in terms of sensitivity and specificity. We hope this study can be inspiring and helpful for encouraging more researches in this topic.

Read more
Image And Video Processing

A New Weighting Scheme for Fan-beam and Circle Cone-beam CT Reconstructions

In this paper, we first present an arc based algorithm for fan-beam computed tomography (CT) reconstruction via applying Katsevich's helical CT formula to 2D fan-beam CT reconstruction. Then, we propose a new weighting function to deal with the redundant projection data. By extending the weighted arc based fan-beam algorithm to circle cone-beam geometry, we also obtain a new FDK-similar algorithm for circle cone-beam CT reconstruction. Experiments show that our methods can obtain higher PSNR and SSIM compared to the Parker-weighted conventional fan-beam algorithm and the FDK algorithm for super-short-scan trajectories.

Read more
Image And Video Processing

A Novel Registration & Colorization Technique for Thermal to Cross Domain Colorized Images

Thermal images can be obtained as either grayscale images or pseudo colored images based on the thermal profile of the object being captured. We present a novel registration method that works on images captured via multiple thermal imagers irrespective of make and internal resolution as well as a colorization scheme that can be used to obtain a colorized thermal image which is similar to an optical image, while retaining the information of the thermal profile as a part of the output, thus providing information of both domains jointly. We call this a cross domain colorized image. We also outline a new public thermal-optical paired database that we are presenting as a part of this paper, containing unique data points obtained via multiple thermal imagers. Finally, we compare the results with prior literature, show how our results are different and discuss on some future work that can be explored further in this domain as well.

Read more
Image And Video Processing

A Petri Dish for Histopathology Image Analysis

With the rise of deep learning, there has been increased interest in using neural networks for histopathology image analysis, a field that investigates the properties of biopsy or resected specimens traditionally manually examined under a microscope by pathologists. However, challenges such as limited data, costly annotation, and processing high-resolution and variable-size images make it difficult to quickly iterate over model designs. Throughout scientific history, many significant research directions have leveraged small-scale experimental setups as petri dishes to efficiently evaluate exploratory ideas. In this paper, we introduce a minimalist histopathology image analysis dataset (MHIST), an analogous petri dish for histopathology image analysis. MHIST is a binary classification dataset of 3,152 fixed-size images of colorectal polyps, each with a gold-standard label determined by the majority vote of seven board-certified gastrointestinal pathologists and annotator agreement level. MHIST occupies less than 400 MB of disk space, and a ResNet-18 baseline can be trained to convergence on MHIST in just 6 minutes using 3.5 GB of memory on a NVIDIA RTX 3090. As example use cases, we use MHIST to study natural questions such as how dataset size, network depth, transfer learning, and high-disagreement examples affect model performance. By introducing MHIST, we hope to not only help facilitate the work of current histopathology imaging researchers, but also make the field more-accessible to the general community. Our dataset is available at this https URL.

Read more

Ready to get started?

Join us today