Featured Researches

Instrumentation And Detectors

Development of an array of HPGe detectors with 980% relative efficiency

Searches for new physics push experiments to look for increasingly rare interactions. As a result, detectors require increasing sensitivity and specificity, and materials must be screened for naturally occurring, background-producing radioactivity. Furthermore the detectors used for screening must approach the sensitivities of the physics-search detectors themselves, thus motivating iterative development of detectors capable of both physics searches and background screening. We report on the design, installation, and performance of a novel, low-background, fourteen-element high-purity germanium detector named the CAGe (CUP Array of Germanium), installed at the Yangyang underground laboratory in Korea.

Read more
Instrumentation And Detectors

Development of highly radiopure NaI(Tl) scintillator for PICOLON dark matter search project

The highly radiopure NaI(Tl) was developed to search for particle candidates of dark matter. The optimized methods were combined to reduce various radioactive impurities. The 40 K was effectively reduced by the re-crystallization method. The progenies of the decay chains of uranium and thorium were reduced by appropriate resins. The concentration of natural potassium in NaI(Tl) crystal was reduced down to 20 ppb. Concentrations of alpha-ray emitters were successfully reduced by appropriate selection of resin. The present concentration of thorium series and 226Ra were 1.2±1.4 μ Bq/kg and 13±4 μ Bq/kg, respectively. No significant excess in the concentration of 210 Pb was obtained, and the upper limit was 5.7 μ Bq/kg at 90% C. L. The achieved level of radiopurity of NaI(Tl) crystals makes construction of a dark matter detector possible.

Read more
Instrumentation And Detectors

Development of novel silicon sensors with high time and spatial resolution

Silicon pad sensors with novel functions of higher timing resolution (LGAD: Low Gain Avalanche Detector) and higher position resolution (PSD: Position Sensitive Detector) are studied for an application to Silicon-Tungsten electromagnetic calorimeter for a detector of the International Linear Collider (ILC). Prototype sensors are fabricated, equipped with dedicated ASICs (Application-Specific Integrated Circuits) and tested with a positron beam as well as a radioisotope. The first results of the measurements of timing resolution with LGADs and position reconstruction with PSDs are reported.

Read more
Instrumentation And Detectors

Development of the Soft X-ray AGM-AGS RIXS Beamline at Taiwan Photon Source

We report on the development of a high-resolution and highly efficient beamline for soft-X-ray resonant inelastic X-ray scattering (RIXS) located at Taiwan Photon Source. This beamline adopts an optical design that uses an active grating monochromator (AGM) and an active grating spectrometer (AGS) to implement the energy compensation principle of grating dispersion. Active gratings are utilized to diminish defocus, coma and higher-order aberrations as well as to decrease the slope errors caused by thermal deformation and optical polishing. The AGS is mounted on a rotatable granite platform to enable momentum-resolved RIXS measurements with scattering angle over a wide range. Several high-precision instruments developed in house for this beamline are briefly described. The best energy resolution obtained from this AGM-AGS beamline was 12.4 meV at 530 eV, achieving a resolving power 42,000, while the bandwidth of the incident soft X-rays was kept at 0.5 eV. To demonstrate the scientific impacts of high-resolution RIXS, we present an example of momentum-resolved RIXS measurements on a high-temperature superconducting cuprate, La 2−x Sr x CuO 4 . The measurements reveal the A 1g apical oxygen phonons in superconducting cuprates, opening a new opportunity to investigate the coupling between these phonons and charge density waves.

Read more
Instrumentation And Detectors

Dielectric-Boosted Sensitivity to Cylindrical Azimuthally Varying Transverse-Magnetic Resonant Modes in an Axion Haloscope

Axions are a popular dark matter candidate which are often searched for in experiments known as ``haloscopes" which exploit a putative axion-photon coupling. These experiments typically rely on Transverse Magnetic (TM) modes in resonant cavities to capture and detect photons generated via axion conversion. We present a study of a resonant cavity design for application in haloscope searches, of particular use in the push to higher mass axion searches (above ∼ 60 μ eV). In particular, we take advantage of azimuthally varying TM m10 modes which, whilst typically insensitive to axions due to field non-uniformity, can be made axion-sensitive (and frequency tunable) through strategic placement of dielectric wedges, becoming a type of resonator known as a Dielectric Boosted Axion Sensitivity (DBAS) resonator. Results from finite-element modelling are presented, and compared with a simple proof-of-concept experiment. The results show a significant increase in axion sensitivity for these DBAS resonators over their empty cavity counterparts, and high potential for application in high mass axion searches when benchmarked against simpler, more traditional designs relying on fundamental TM modes.

Read more
Instrumentation And Detectors

Digital laser frequency and intensity stabilization based on the STEMlab platform (originally Red Pitaya)

We report on the development, implementation, and characterization of digital controllers for laser frequency stabilization as well as intensity stabilization and control. Our design is based on the STEMlab (originally Red Pitaya) platform. The presented analog hardware interfaces provide all necessary functionalities for the designated applications and can be integrated in standard 19-inch rack mount units. Printed circuit board layouts are made available as an open-source project.\cite{APQGit_Lockbox,APQGit_IntStab} A detailed characterization shows that the bandwidth 1.25 MHz and the noise performance of the controllers are limited by the STEMlab system and not affected by the supplementary hardware. Frequency stabilization of a diode laser system resulting in a linewidth of 52(1) kHz (FWHM) is demonstrated. Intensity control to the 10 −3 level with sub-microsecond rise and fall times based on an acousto-optic modulator as actuator is achieved.

Read more
Instrumentation And Detectors

Direct method for the quantitative analysis of surface contamination on ultra-low background materials from exposure to dust

In this work we present a method for the direct determination of contaminant fallout rates on material surfaces from exposure to dust. Naturally occurring radionuclides K-40, Th-232, U-238 and stable Pb were investigated. Until now, background contributions from dust particulate have largely been estimated from fallout models and assumed dust composition. Our method utilizes a variety of low background collection media for exposure in locations of interest, followed by surface leaching and leachate analysis using inductively coupled plasma mass spectrometry (ICP-MS). The method was validated and applied in selected locations at Pacific Northwest National Laboratory (PNNL) and the SNOLAB underground facility.

Read more
Instrumentation And Detectors

Directional detection of dark matter with diamond

Searches for WIMP dark matter will in the near future be sensitive to solar neutrinos. Directional detection offers a method to reject solar neutrinos and improve WIMP searches, but reaching that sensitivity with existing directional detectors poses challenges. We propose a combined atomic/particle physics approach using a large-volume diamond detector. WIMP candidate events trigger a particle detector, after which spectroscopy of nitrogen vacancy centers reads out the direction of the incoming particle. We discuss the current state of technologies required to realize directional detection in diamond and present a path towards a detector with sensitivity below the neutrino floor.

Read more
Instrumentation And Detectors

Distance-Weighted Graph Neural Networks on FPGAs for Real-Time Particle Reconstruction in High Energy Physics

Graph neural networks have been shown to achieve excellent performance for several crucial tasks in particle physics, such as charged particle tracking, jet tagging, and clustering. An important domain for the application of these networks is the FGPA-based first layer of real-time data filtering at the CERN Large Hadron Collider, which has strict latency and resource constraints. We discuss how to design distance-weighted graph networks that can be executed with a latency of less than 1 μs on an FPGA. To do so, we consider a representative task associated to particle reconstruction and identification in a next-generation calorimeter operating at a particle collider. We use a graph network architecture developed for such purposes, and apply additional simplifications to match the computing constraints of Level-1 trigger systems, including weight quantization. Using the hls4ml library, we convert the compressed models into firmware to be implemented on an FPGA. Performance of the synthesized models is presented both in terms of inference accuracy and resource usage.

Read more
Instrumentation And Detectors

Dosimetry and calorimetry performance of a scientific CMOS camera for environmental monitoring

This paper explores the prospect of CMOS devices to assay lead in drinking water, using calorimetry. Lead occurs together with traces of radioisotopes, e.g. Lead-210, producing γ -emissions with energies ranging from 10 keV to several 100 keV when they decay; this range is detectable in silicon sensors. In this paper we test a CMOS camera (Oxford Instruments Neo 5.5) for its general performance as a detector of x-rays and low energy γ -rays and assess its sensitivity relative to the World Health Organization upper limit on lead in drinking water. Energies from 6 keV to 60 keV are examined. The CMOS camera has a linear energy response over this range and its energy resolution is for the most part slightly better than 2 %. The Neo sCMOS is not sensitive to x-rays with energies below ∼10keV . The smallest detectable rate is 40 ± 3 mHz, corresponding to an incident activity on the chip of 7 ± 4 Bq. The estimation of the incident activity sensitivity from the detected activity relies on geometric acceptance and the measured efficiency vs. energy. We report the efficiency measurement, which is 0.08 ± 0.02 % (0.0011 ± 0.0002 %) at 26.3 keV (59.5 keV). Taking calorimetric information into account we measure a minimal detectable rate of 4 ± 1 mHz (1.5 ± 0.1 mHz) for 26.3 keV (59.5 keV) γ -rays, which corresponds to an incident activity of 1.0 ± 0.6 Bq (57 ± 33 Bq). Toy Monte Carlo and Geant4 simulations agree with these results. These results show this CMOS sensor is well-suited as a γ - and x-ray detector with sensitivity at the few to 100 ppb level for Lead-210 in a sample.

Read more

Ready to get started?

Join us today