Featured Researches

Biomolecules

Generative network complex (GNC) for drug discovery

It remains a challenging task to generate a vast variety of novel compounds with desirable pharmacological properties. In this work, a generative network complex (GNC) is proposed as a new platform for designing novel compounds, predicting their physical and chemical properties, and selecting potential drug candidates that fulfill various druggable criteria such as binding affinity, solubility, partition coefficient, etc. We combine a SMILES string generator, which consists of an encoder, a drug-property controlled or regulated latent space, and a decoder, with verification deep neural networks, a target-specific three-dimensional (3D) pose generator, and mathematical deep learning networks to generate new compounds, predict their drug properties, construct 3D poses associated with target proteins, and reevaluate druggability, respectively. New compounds were generated in the latent space by either randomized output, controlled output, or optimized output. In our demonstration, 2.08 million and 2.8 million novel compounds are generated respectively for Cathepsin S and BACE targets. These new compounds are very different from the seeds and cover a larger chemical space. For potentially active compounds, their 3D poses are generated using a state-of-the-art method. The resulting 3D complexes are further evaluated for druggability by a championing deep learning algorithm based on algebraic topology, differential geometry, and algebraic graph theories. Performed on supercomputers, the whole process took less than one week. Therefore, our GNC is an efficient new paradigm for discovering new drug candidates.

Read more
Biomolecules

Generative network complex for the automated generation of druglike molecules

Current drug discovery is expensive and time-consuming. It remains a challenging task to create a wide variety of novel compounds with desirable pharmacological properties and cheaply available to low-income people. In this work, we develop a generative network complex (GNC) to generate new drug-like molecules based on the multi-property optimization via the gradient descent in the latent space of an autoencoder. In our GNC, both multiple chemical properties and similarity scores are optimized to generate and predict drug-like molecules with desired chemical properties. To further validate the reliability of the predictions, these molecules are reevaluated and screened by independent 2D fingerprint-based predictors to come up with a few hundreds of new drug candidates. As a demonstration, we apply our GNC to generate a large number of new BACE1 inhibitors, as well as thousands of novel alternative drug candidates for eight existing market drugs, including Ceritinib, Ribociclib, Acalabrutinib, Idelalisib, Dabrafenib, Macimorelin, Enzalutamide, and Panobinostat.

Read more
Biomolecules

Geometric constraints in protein folding

The intricate three-dimensional geometries of protein tertiary structures underlie protein function and emerge through a folding process from one-dimensional chains of amino acids. The exact spatial sequence and configuration of amino acids, the biochemical environment and the temporal sequence of distinct interactions yield a complex folding process that cannot yet be easily tracked for all proteins. To gain qualitative insights into the fundamental mechanisms behind the folding dynamics and generic features of the folded structure, we propose a simple model of structure formation that takes into account only fundamental geometric constraints and otherwise assumes randomly paired connections. We find that despite its simplicity, the model results in a network ensemble consistent with key overall features of the ensemble of Protein Residue Networks we obtained from more than 1000 biological protein geometries as available through the Protein Data Base. Specifically, the distribution of the number of interaction neighbors a unit (amino acid) has, the scaling of the structure's spatial extent with chain length, the eigenvalue spectrum and the scaling of the smallest relaxation time with chain length are all consistent between model and real proteins. These results indicate that geometric constraints alone may already account for a number of generic features of protein tertiary structures.

Read more
Biomolecules

Geometry and flexibility of optimal catalysts in a minimal elastic network model

We have a general knowledge of the principles by which catalysts accelerate the rate of chemical reactions but no precise understanding of the geometrical and physical constraints to which their design is subject. To analyze these constraints, we introduce a minimal model of catalysis based on elastic networks where the implications of the geometry and flexibility of a catalyst can be studied systematically. The model demonstrates the relevance and limitations of the principle of transition-state stabilization: optimal catalysts are found to have a geometry complementary to the transition state but a degree of flexibility that non-trivially depends on the parameters of the reaction as well as on external parameters such as the concentrations of reactants and products. The results illustrate how simple physical models can provide valuable insights on the design of catalysts.

Read more
Biomolecules

Glassy Carbon Microelectrode Arrays Enable Voltage-Peak Separated Simultaneous Detection of Dopamine and Serotonin Using Fast Scan Cyclic Voltammetry

Progress in real-time, simultaneous in vivo detection of multiple neurotransmitters will help accelerate advances in neuroscience research. The need for development of probes capable of stable electrochemical detection of rapid neurotransmitter fluctuations with high sensitivity and selectivity and sub-second temporal resolution has, therefore, become compelling. Additionally, a higher spatial resolution multi-channel capability is required to capture the complex neurotransmission dynamics across different brain regions. These research needs have inspired the introduction of glassy carbon (GC) microelectrode arrays on flexible polymer substrates through carbon MEMS (C-MEMS) microfabrication process followed by a novel pattern transfer technique. These implantable GC microelectrodes offer unique advantages in electrochemical detection of electroactive neurotransmitters through the presence of active carboxyl, carbonyl, and hydroxyl functional groups. In addition, they offer fast electron transfer kinetics, capacitive electrochemical behavior, and wide electrochemical window. Here, we combine the use of these GC microelectrodes with the fast scan cyclic voltammetry (FSCV) technique to optimize the co-detection of dopamine and serotonin in vitro and in vivo. We demonstrate that using optimized FSCV triangular waveform at scan rates lower than 700 V/s and holding and switching at potentials of 0.4 and 1V respectively, it is possible to discriminate voltage reduction and oxidation peaks of serotonin and dopamine, with serotonin contributing distinct multiple oxidation peaks. Taken together, our results present a compelling case for a carbon-based MEA platform rich with active functional groups that allows for repeatable and stable detection of electroactive multiple neurotransmitters at concentrations as low as 10 nM

Read more
Biomolecules

Global Small-Angle Scattering Data Analysis of Inverted Hexagonal Phases

We have developed a global analysis model for randomly oriented, fully hydrated inverted hexagonal (H II ) phases formed by many amphiphiles in aqueous solution, including membrane lipids. The model is based on a structure factor for hexagonally packed rods and a compositional model for the scattering length density (SLD) enabling also the analysis of positionally weakly correlated H II phases. For optimization of the adjustable parameters we used Bayesian probability theory, which allows to retrieve parameter correlations in much more detail than standard analysis techniques, and thereby enables a realistic error analysis. The model was applied to different phosphatidylethanolamines including previously not reported H II data for diC14:0 and diC16:1 phosphatidylethanolamine. The extracted structural features include intrinsic lipid curvature, hydrocarbon chain length and area per lipid at the position of the neutral plane.

Read more
Biomolecules

Glutathione conjugates of the mercapturic acid pathway and guanine adduct as biomarkers of exposure to CEES, a sulfur mustard analog

Sulfur mustard (SM), a chemical warfare agent, is a strong alkylating compound that readily reacts with numerous biomolecules. The goal of the present work was to define and validate new biomarkers of exposure to SM that could be easily accessible in urine or plasma. Because investigations using SM are prohibited by the Organization for the Prohibition of Chemical Weapons, we worked with 2-chloroethyl ethyl sulfide (CEES), a monofunctional analog of SM. We developed an ultra-high-pressure liquid chromatography - tandem mass spectrometry approach (UHPLC-MS/MS) to the conjugate of CEES to glutathione and two of its metabolites, the cysteine and the N-acetyl-cysteine conjugates. The N7-guanine adduct of CEES (N7Gua-CEES) was also targeted. After synthesizing the specific biomarkers, a solid phase extraction protocol and a UHPLC-MS/MS method with isotopic dilution were optimized. We were able to quantify N7Gua-CEES in the DNA of HaCaT keratinocytes and of explants of human skin exposed to CEES. N7Gua-CEES was also detected in the culture medium of these two models, together with the glutathione and the cysteine conjugates. In contrast, the N-acetyl-cysteine conjugate was not detected. The method was then applied to plasma from mice cutaneously exposed to CEES. All four markers could be detected. Our present results thus validate both the analytical technique and the biological relevance of new, easily quantifiable biomarkers of exposure to CEES. Because CEES behaves very similarly to SM, the results are promising for application to this toxic of interest.

Read more
Biomolecules

Graph-convolution neural network-based flexible docking utilizing coarse-grained distance matrix

Prediction of protein-ligand complexes for flexible proteins remains still a challenging problem in computational structural biology and drug design. Here we present two novel deep neural network approaches with significant improvement in efficiency and accuracy of binding mode prediction on a large and diverse set of protein systems compared to standard docking. Whereas the first graph convolutional network is used for re-ranking poses the second approach aims to generate and rank poses independent of standard docking approaches. This novel approach relies on the prediction of distance matrices between ligand atoms and protein C_alpha atoms thus incorporating side-chain flexibility implicitly.

Read more
Biomolecules

Grid diagrams as tools to investigate knot spaces and topoisomerase-mediated simplification of DNA topology

Grid diagrams with their relatively simple mathematical formalism provide a convenient way to generate and model projections of various knots. It has been an open question whether these 2D diagrams can be used to model a complex 3D process such as the topoisomerase-mediated preferential unknotting of DNA molecules. We model here topoisomerase-mediated passages of double-stranded DNA segments through each other using the formalism of grid diagrams. We show that this grid diagram-based modelling approach captures the essence of the preferential unknotting mechanism, based on topoisomerase selectivity of hooked DNA juxtapositions as the sites of intersegmental passages. We show that grid diagram-based approach provide an important, new and computationally convenient framework for investigating entanglement in biopolymers.

Read more
Biomolecules

Growth and site-specific organization of micron-scale biomolecular devices on living mammalian cells

Mesoscale molecular assemblies on the cell surface, such as cilia and filopodia, integrate information, control transport and amplify signals. Synthetic devices mimicking these structures could sensitively monitor these cellular functions and direct new ones. The challenges in creating such devices, however are that they must be integrated with cells in a precise kinetically controlled process and a device's structure and its precisely structured cell interface must then be maintained during active cellular function. Here we report the ability to integrate synthetic micro-scale filaments, DNA nanotubes, into a cell's architecture by anchoring them by their ends to specific receptors on the surfaces of mammalian cells. These filaments can act as shear stress meters: how anchored nanotubes bend at the cell surface quantitatively indicates the magnitude of shear stresses between 0-2 dyn per cm2, a regime important for cell signaling. Nanotubes can also grow while anchored to cells, thus acting as dynamic components of cells. This approach to cell surface engineering, in which synthetic biomolecular assemblies are organized within existing cellular architecture, could make it possible to build new types of sensors, machines and scaffolds that can interface with, control and measure properties of cells.

Read more

Ready to get started?

Join us today