Featured Researches

Solar And Stellar Astrophysics

Characterizing the Evolved Stellar Population in the Galactic Foreground I: Bolometric Magnitudes, Spatial Distribution and P-L Relations

Radio campaigns using maser stellar beacons have provided crucial information to characterize Galactic stellar populations. Currently, the Bulge Asymmetries and Dynamical Evolution (BAaDE) project is surveying infrared (IR) color-selected targets for SiO masers. This provides a sample of evolved stars that can be used to study the inner, optically obscured Galaxy using line of sight velocities and possibly VLBI proper motions. In order to use the BAaDE sample for kinematic studies, the stellar population should be characterized. In this study, the BAaDE targets have been cross-matched with IR (2MASS) and optical Gaia samples. By exploring the synergies of this cross-match together with Gaia parallaxes and extinction maps, the local ( d<2 kpc) AGB stars can be characterized. We have defined a \textit{BAaDE-Gaia} sample of 20,111 sources resulting from cross-matching BAaDE targets with IR and optical surveys. From this sample, a~{\local} sample of 1,812 evolved stars with accurate parallax measurements, confirmed evolved stellar evolution stage, and within 2 kpc distance around the Sun was selected, for which absolute (bolometric) magnitudes are estimated. The evolved stellar population with Gaia counterparts that are variable seems to be predominantly associated with AGB stars with moderate luminosity ( 1, 500 +3,000 āˆ’500 L āŠ™ ) and periods between 250 and 1,250 days.

Read more
Solar And Stellar Astrophysics

Chemically Homogeneous Evolution: A rapid population synthesis approach

We explore chemically homogeneous evolution (CHE) as a formation channel for massive merging binary black holes (BBHs). We develop methods to include CHE in a rapid binary population synthesis code, Compact Object Mergers: Population Astrophysics and Statistics (COMPAS), which combines realistic models of binary evolution with cosmological models of the star-formation history of the Universe. For the first time, we simultaneously explore conventional isolated binary star evolution under the same set of assumptions. This approach allows us to constrain population properties and make simultaneous predictions about the gravitational-wave detection rates of BBH mergers for the CHE and conventional formation channels. The overall mass distribution of detectable BBHs is consistent with existing gravitational-wave observations. We find that the CHE channel may yield up to ~70% of all gravitational-wave detections of BBH mergers coming from isolated binary evolution.

Read more
Solar And Stellar Astrophysics

Chromospheric Activity in 55 Cancri: I. Results from Theoretical Wave Studies

We present theoretical models of chromospheric heating for 55 Cancri, an orange dwarf of relatively low activity. Self-consistent, nonlinear and time-dependent ab-initio numerical computations are pursued encompassing the generation, propagation, and dissipation of waves. We consider longitudinal waves operating among arrays of flux tubes as well as acoustic waves pertaining to nonmagnetic stellar regions. Additionally, flux enhancements for the longitudinal waves are also taken into account as supplied by transverse tube waves. The Ca II K fluxes are computed (multi-ray treatment) assuming partial redistribution as well as time-dependent ionization. The self-consistent treatment of time-dependent ionization (especially for hydrogen) greatly impacts the atmospheric temperatures and electron densities (especially behind the shocks); it also affects the emergent Ca II fluxes. Particularly, we focus on the influence of magnetic heating on the stellar atmospheric structure and the emergent Ca II emission, as well as the impact of nonlinearities. Our study shows that a higher photospheric magnetic filling factor entails a larger Ca II emission; however, an increased initial wave energy flux (e.g., associated with mode coupling) is of little difference. Comparisons of our theoretical results with observations will be conveyed in forthcoming Paper II.

Read more
Solar And Stellar Astrophysics

Chromospheric and coronal heating and jet acceleration due to reconnection driven by flux cancellation. I. At a three-dimensional current sheet

Context. The recent discovery of much greater magnetic flux cancellation taking place at the photosphere than previously realised has led us in our previous works to suggest magnetic reconnection driven by flux cancellation as the cause of a wide range of dynamic phenomena, including jets of various kinds and solar atmospheric heating. Aims. Previously, the theory considered energy release at a two-dimensional current sheet. Here we develop the theory further by extending it to an axisymmetric current sheet in three dimensions without resorting to complex variable theory. Methods. We analytically study reconnection and treat the current sheet as a three-dimensional structure. We apply the theory to the cancellation of two fragments of equal but opposite flux that approach each another and are located in an overlying horizontal magnetic field. Results. The energy release occurs in two phases. During Phase 1, a separator is formed and reconnection is driven at it as it rises to a maximum height and then moves back down to the photosphere, heating the plasma and accelerating a plasma jet as it does so. During Phase 2 the fluxes cancel in the photosphere and accelerate a mixture of cool and hot plasma upwards.

Read more
Solar And Stellar Astrophysics

Classical Novae Masquerading as Dwarf Novae? Outburst Properties of Cataclysmic Variables with ASAS-SN

The unprecedented sky coverage and observing cadence of the All-Sky Automated Survey for SuperNovae (ASAS-SN) has resulted in the discovery and continued monitoring of a large sample of Galactic transients. The vast majority of these are accretion-powered dwarf nova outbursts in cataclysmic variable systems, but a small subset are thermonuclear-powered classical novae. Despite improved monitoring of the Galaxy for novae from ASAS-SN and other surveys, the observed Galactic nova rate is still lower than predictions. One way classical novae could be missed is if they are confused with the much larger population of dwarf novae. Here, we examine the properties of 1617 dwarf nova outbursts detected by ASAS-SN and compare them to classical novae. We find that the mean classical nova brightens by ~11 magnitudes during outburst, while the mean dwarf nova brightens by only ~5 magnitudes, with the outburst amplitude distributions overlapping by roughly 15%. For the first time, we show that the amplitude of an outburst and the time it takes to decline by two magnitudes from maximum are positively correlated for dwarf nova outbursts. For classical novae, we find that these quantities are negatively correlated, but only weakly, compared to the strong anti-correlation of these quantities found in some previous work. We show that, even if located at large distances, only a small number of putative dwarf novae could be mis-classified classical novae suggesting that there is minimal confusion between these populations. Future spectroscopic follow-up of these candidates can show whether any are indeed classical novae.

Read more
Solar And Stellar Astrophysics

Cloud Atlas: Unraveling the vertical cloud structure with the time-series spectrophotometry of an unusually red brown dwarf

Rotational modulations of emission spectra in brown dwarf and exoplanet atmospheres show that clouds are often distributed non-uniformly in these ultracool atmospheres. The spatial heterogeneity in cloud distribution demonstrates the impact of atmospheric dynamics on cloud formation and evolution. In this study, we update the Hubble Space Telescope (HST) time-series data analysis of the previously reported rotational modulations of WISEP J004701+680352 -- an unusually red late-L brown dwarf with a spectrum similar to that of the directly imaged planet HR8799e. We construct a self-consistent spatially heterogeneous cloud model to explain the Hubble Space Telescope and the Spitzer time-series observations, as well as the time-averaged spectra of WISE0047. In the heterogeneous cloud model, a cloud thickness variation of around one pressure scale height explains the wavelength dependence in the HST near-IR spectral variability. By including disequilibrium CO/ C H 4 chemistry, our models also reproduce the redder Jāˆ’ K s color of WISE0047 compared to that of field brown dwarfs. We discuss the impact of vertical cloud structure on atmospheric profile and estimate the minimum eddy diffusivity coefficient for other objects with redder colors. Our data analysis and forward modeling results demonstrate that time-series spectrophotometry with a broad wavelength coverage is a powerful tool for constraining heterogeneous atmospheric structure.

Read more
Solar And Stellar Astrophysics

Coadded Spectroscopic Stellar Parameters and Abundances from the LAMOST Low Resolution Survey

I combine duplicate spectroscopic stellar parameter estimates in the Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) Data Release 6 Low Resolution Spectral Survey A, F, G, and K Type stellar parameter catalog. Combining repeat measurements results in a factor of two improvement in the precision of the spectroscopic stellar parameter estimates. Moreover, this trivializes the process of performing coordinate-based cross-matching with other catalogs. Similarly, I combine duplicate stellar abundance estimates for the Xiang et al. catalog which was produced using LAMOST Data Release 5 Low Resolution Spectral Survey data. These data have numerous applications in stellar, galactic, and exoplanet astronomy. The catalogs I produce are available as machine-readable tables at this https URL .

Read more
Solar And Stellar Astrophysics

Coalescence Instability in Chromospheric Partially Ionised Plasmas

Fast magnetic reconnection plays a fundamental role in driving explosive dynamics and heating in the solar chromosphere. The reconnection time scale of traditional models is shortened at the onset of the coalescence instability, which forms a turbulent reconnecting current sheet through plasmoid interaction. In this work we aim to investigate the role of partial ionisation on the development of fast reconnection through the study of the coalescence instability of plasmoids. Unlike the processes occurring in fully ionised coronal plasmas, relatively little is known about how fast reconnection develops in partially ionised plasmas of the chromosphere. We present 2.5D numerical simulations of coalescing plasmoids in a single fluid magnetohydrodynamic (MHD) model, and a two-fluid model of a partially ionised plasma (PIP). We find that in the PIP model, which has the same total density as the MHD model but an initial plasma density two orders of magnitude smaller, plasmoid coalescence is faster than the MHD case, following the faster thinning of the current sheet and secondary plasmoid dynamics. Secondary plasmoids form in the PIP model where the effective Lundquist number S=7.8??10 3 , but are absent from the MHD case where S=9.7??10 3 : these are responsible for a more violent reconnection. Secondary plasmoids also form in linearly stable conditions as a consequence of the non-linear dynamics of the neutrals in the inflow. In the light of these results we can affirm that two-fluid effects play a major role on the processes occurring in the solar chromosphere.

Read more
Solar And Stellar Astrophysics

Collinder 135 and UBC 7: A Physical Pair of Open Clusters

Given the closeness of the two open clusters Cr 135 and UBC 7 on the sky, we investigate the possibility of the two clusters to be physically related. We aim to recover the present-day stellar membership in the open clusters Collinder 135 and UBC 7 (300 pc from the Sun), to constrain their kinematic parameters, ages and masses, and to restore their primordial phase space configuration. The most reliable cluster members are selected with our traditional method modified for the use of Gaia DR2 data. Numerical simulations use the integration of cluster trajectories backwards in time with our original high order Hermite4 code \PGRAPE. We constrain the age, spatial coordinates and velocities, radii and masses of the clusters. We estimate the actual separation of the cluster centres equal to 24 pc. The orbital integration shows that the clusters were much closer in the past if their current line-of-sight velocities are very similar and the total mass is more than 7 times larger the mass of the determined most reliable members. We conclude that the two clusters Cr 135 and UBC 7 might very well have formed a physial pair, based on the observational evidence as well as numerical simulations. The probability of a chance coincidence is only about 2% .

Read more
Solar And Stellar Astrophysics

Comparative high-resolution spectroscopy of M dwarfs -- exploring non-LTE effects

M dwarfs are key targets for high-resolution spectroscopic analyses due to a high incidence of these stars in the solar neighbourhood and their importance as exoplanetary hosts. Several methodological challenges make such analyses difficult, leading to significant discrepancies in the published results. We compare M dwarf parameters derived by recent high-resolution near-infrared studies with each other and with fundamental stellar parameters. We also assess to what extent deviations from local thermodynamic equilibrium (LTE) for Fe and K influence the outcome of these studies. We carry out line formation calculations based on a modern model atmosphere grid along with a synthetic spectrum synthesis code that treats formation of atomic and molecular lines in cool-star atmospheres including departures from LTE. We use near-infrared spectra collected with the CRIRES instrument at the ESO VLT as reference observational data. We find that the effective temperatures obtained by the different studies mostly agree to better than 100 K. We see a much worse agreement in the surface gravities and metallicities. We demonstrate that non-LTE effects are negligible for Fe I in M-dwarf atmospheres but are important for K I. These effects, leading to K abundance and metallicity corrections on the order of 0.2 dex, may be responsible for some of the discrepancies in the published analyses. Differences in the temperature-pressure structures of the atmospheric models may be another factor contributing to the discrepancies, in particular at low metallicities and high effective temperatures. In high-resolution spectroscopic studies of M dwarfs attention should be given to details of the line formation physics as well as input atomic and molecular data. Collecting high-quality, wide wavelength coverage spectra of benchmark M dwarfs is an essential future step.

Read more

Ready to get started?

Join us today