Featured Researches

Graphics

A Comparison of Rendering Techniques for Large 3D Line Sets with Transparency

This paper presents a comprehensive study of interactive rendering techniques for large 3D line sets with transparency. The rendering of transparent lines is widely used for visualizing trajectories of tracer particles in flow fields. Transparency is then used to fade out lines deemed unimportant, based on, for instance, geometric properties or attributes defined along them. Since accurate blending of transparent lines requires rendering the lines in back-to-front or front-to-back order, enforcing this order for 3D line sets with tens or even hundreds of thousands of elements becomes challenging. In this paper, we study CPU and GPU rendering techniques for large transparent 3D line sets. We compare accurate and approximate techniques using optimized implementations and a number of benchmark data sets. We discuss the effects of data size and transparency on quality, performance and memory consumption. Based on our study, we propose two improvements to per-pixel fragment lists and multi-layer alpha blending. The first improves the rendering speed via an improved GPU sorting operation, and the second improves rendering quality via a transparency-based bucketing.

Read more
Graphics

A Comprehensive Theory and Variational Framework for Anti-aliasing Sampling Patterns

In this paper, we provide a comprehensive theory of anti-aliasing sampling patterns that explains and revises known results, and show how patterns as predicted by the theory can be generated via a variational optimization framework. We start by deriving the exact spectral expression for expected error in reconstructing an image in terms of power spectra of sampling patterns, and analyzing how the shape of power spectra is related to anti-aliasing properties. Based on this analysis, we then formulate the problem of generating anti-aliasing sampling patterns as constrained variational optimization on power spectra. This allows us to not rely on any parametric form, and thus explore the whole space of realizable spectra. We show that the resulting optimized sampling patterns lead to reconstructions with less visible aliasing artifacts, while keeping low frequencies as clean as possible.

Read more
Graphics

A Convenient Generalization of Schlick's Bias and Gain Functions

We present a generalization of Schlick's bias and gain functions -- simple parametric curve-shaped functions for inputs in [0, 1]. Our single function includes both bias and gain as special cases, and is able to describe other smooth and monotonic curves with variable degrees of asymmetry.

Read more
Graphics

A Deep Learning based Fast Signed Distance Map Generation

Signed distance map (SDM) is a common representation of surfaces in medical image analysis and machine learning. The computational complexity of SDM for 3D parametric shapes is often a bottleneck in many applications, thus limiting their interest. In this paper, we propose a learning based SDM generation neural network which is demonstrated on a tridimensional cochlea shape model parameterized by 4 shape parameters. The proposed SDM Neural Network generates a cochlea signed distance map depending on four input parameters and we show that the deep learning approach leads to a 60 fold improvement in the time of computation compared to more classical SDM generation methods. Therefore, the proposed approach achieves a good trade-off between accuracy and efficiency.

Read more
Graphics

A Discrete Probabilistic Approach to Dense Flow Visualization

Dense flow visualization is a popular visualization paradigm. Traditionally, the various models and methods in this area use a continuous formulation, resting upon the solid foundation of functional analysis. In this work, we examine a discrete formulation of dense flow visualization. From probability theory, we derive a similarity matrix that measures the similarity between different points in the flow domain, leading to the discovery of a whole new class of visualization models. Using this matrix, we propose a novel visualization approach consisting of the computation of spectral embeddings, i.e., characteristic domain maps, defined by particle mixture probabilities. These embeddings are scalar fields that give insight into the mixing processes of the flow on different scales. The approach of spectral embeddings is already well studied in image segmentation, and we see that spectral embeddings are connected to Fourier expansions and frequencies. We showcase the utility of our method using different 2D and 3D flows.

Read more
Graphics

A Fast Parametric Ellipse Algorithm

This paper describes a 2-D graphics algorithm that uses shifts and adds to precisely plot a series of points on an ellipse of any shape and orientation. The algorithm can also plot an elliptic arc that starts and ends at arbitrary angles. The ellipse algorithm described here is largely based on earlier papers by Van Aken and Simar [1,2], which extend Marvin Minsky's well-known circle algorithm [3,4,5] to ellipses, and show how to cancel out the sources of error in Minsky's original algorithm. A new flatness test is presented for automatically controlling the spacing between points plotted on an ellipse or elliptic arc. Most of the calculations performed by the ellipse algorithm and flatness test use fixed-point addition and shift operations, and thus are well-suited to run on less-powerful processors. C++ source code listings are included. Keywords: parametric ellipse algorithm, rotated ellipse, Minsky circle algorithm, flatness, elliptic arc, conjugate diameters, affine invariance

Read more
Graphics

A Feature-aware SPH for Isotropic Unstructured Mesh Generation

In this paper, we present a feature-aware SPH method for the concurrent and automated isotropic unstructured mesh generation. Two additional objectives are achieved with the proposed method compared to the original SPH-based mesh generator (Fu et al., 2019). First, a feature boundary correction term is introduced to address the issue of incomplete kernel support at the boundary vicinity. The mesh generation of feature curves, feature surfaces and volumes can be handled concurrently without explicitly following a dimensional sequence. Second, a two-phase model is proposed to characterize the mesh-generation procedure by a feature-size-adaptation phase and a mesh-quality-optimization phase. By proposing a new error measurement criterion and an adaptive control system with two sets of simulation parameters, the objectives of faster feature-size adaptation and local mesh-quality improvement are merged into a consistent framework. The proposed method is validated with a set of 2D and 3D numerical tests with different complexities and scales. The results demonstrate that high-quality meshes are generated with a significant speedup of convergence.

Read more
Graphics

A Flexible Neural Renderer for Material Visualization

Photo realism in computer generated imagery is crucially dependent on how well an artist is able to recreate real-world materials in the scene. The workflow for material modeling and editing typically involves manual tweaking of material parameters and uses a standard path tracing engine for visual feedback. A lot of time may be spent in iterative selection and rendering of materials at an appropriate quality. In this work, we propose a convolutional neural network based workflow which quickly generates high-quality ray traced material visualizations on a shaderball. Our novel architecture allows for control over environment lighting and assists material selection along with the ability to render spatially-varying materials. Additionally, our network enables control over environment lighting which gives an artist more freedom and provides better visualization of the rendered material. Comparison with state-of-the-art denoising and neural rendering techniques suggests that our neural renderer performs faster and better. We provide a interactive visualization tool and release our training dataset to foster further research in this area.

Read more
Graphics

A Fully Bayesian Infinite Generative Model for Dynamic Texture Segmentation

Generative dynamic texture models (GDTMs) are widely used for dynamic texture (DT) segmentation in the video sequences. GDTMs represent DTs as a set of linear dynamical systems (LDSs). A major limitation of these models concerns the automatic selection of a proper number of DTs. Dirichlet process mixture (DPM) models which have appeared recently as the cornerstone of the non-parametric Bayesian statistics, is an optimistic candidate toward resolving this issue. Under this motivation to resolve the aforementioned drawback, we propose a novel non-parametric fully Bayesian approach for DT segmentation, formulated on the basis of a joint DPM and GDTM construction. This interaction causes the algorithm to overcome the problem of automatic segmentation properly. We derive the Variational Bayesian Expectation-Maximization (VBEM) inference for the proposed model. Moreover, in the E-step of inference, we apply Rauch-Tung-Striebel smoother (RTSS) algorithm on Variational Bayesian LDSs. Ultimately, experiments on different video sequences are performed. Experiment results indicate that the proposed algorithm outperforms the previous methods in efficiency and accuracy noticeably.

Read more
Graphics

A Generalized Framework for Edge-preserving and Structure-preserving Image Smoothing

Image smoothing is a fundamental procedure in applications of both computer vision and graphics. The required smoothing properties can be different or even contradictive among different tasks. Nevertheless, the inherent smoothing nature of one smoothing operator is usually fixed and thus cannot meet the various requirements of different applications. In this paper, a non-convex non-smooth optimization framework is proposed to achieve diverse smoothing natures where even contradictive smoothing behaviors can be achieved. To this end, we first introduce the truncated Huber penalty function which has seldom been used in image smoothing. A robust framework is then proposed. When combined with the strong flexibility of the truncated Huber penalty function, our framework is capable of a range of applications and can outperform the state-of-the-art approaches in several tasks. In addition, an efficient numerical solution is provided and its convergence is theoretically guaranteed even the optimization framework is non-convex and non-smooth. The effectiveness and superior performance of our approach are validated through comprehensive experimental results in a range of applications.

Read more

Ready to get started?

Join us today