Featured Researches

Neural And Evolutionary Computing

Deep Cross-Subject Mapping of Neural Activity

Objective. In this paper, we consider the problem of cross-subject decoding, where neural activity data collected from the prefrontal cortex of a given subject (destination) is used to decode motor intentions from the neural activity of a different subject (source). Approach. We cast the problem of neural activity mapping in a probabilistic framework where we adopt deep generative modelling. Our proposed algorithm uses deep conditional variational autoencoder to infer the representation of the neural activity of the source subject into an adequate feature space of the destination subject where neural decoding takes place. Results. We verify our approach on an experimental data set in which two macaque monkeys perform memory-guided visual saccades to one of eight target locations. The results show a peak cross-subject decoding improvement of 8% over subject-specific decoding. Conclusion. We demonstrate that a neural decoder trained on neural activity signals of one subject can be used to robustly decode the motor intentions of a different subject with high reliability. This is achieved in spite of the non-stationary nature of neural activity signals and the subject-specific variations of the recording conditions. Significance. The findings reported in this paper are an important step towards the development of cross-subject brain-computer that generalize well across a population.

Read more
Neural And Evolutionary Computing

Deep Echo State Networks for Short-Term Traffic Forecasting: Performance Comparison and Statistical Assessment

In short-term traffic forecasting, the goal is to accurately predict future values of a traffic parameter of interest occurring shortly after the prediction is queried. The activity reported in this long-standing research field has been lately dominated by different Deep Learning approaches, yielding overly complex forecasting models that in general achieve accuracy gains of questionable practical utility. In this work we elaborate on the performance of Deep Echo State Networks for this particular task. The efficient learning algorithm and simpler parametric configuration of these alternative modeling approaches make them emerge as a competitive traffic forecasting method for real ITS applications deployed in devices and systems with stringently limited computational resources. An extensive comparison benchmark is designed with real traffic data captured over the city of Madrid (Spain), amounting to more than 130 automatic Traffic Readers (ATRs) and several shallow learning, ensembles and Deep Learning models. Results from this comparison benchmark and the analysis of the statistical significance of the reported performance gaps are decisive: Deep Echo State Networks achieve more accurate traffic forecasts than the rest of considered modeling counterparts.

Read more
Neural And Evolutionary Computing

Deep Evolution for Facial Emotion Recognition

Deep facial expression recognition faces two challenges that both stem from the large number of trainable parameters: long training times and a lack of interpretability. We propose a novel method based on evolutionary algorithms, that deals with both challenges by massively reducing the number of trainable parameters, whilst simultaneously retaining classification performance, and in some cases achieving superior performance. We are robustly able to reduce the number of parameters on average by 95% (e.g. from 2M to 100k parameters) with no loss in classification accuracy. The algorithm learns to choose small patches from the image, relative to the nose, which carry the most important information about emotion, and which coincide with typical human choices of important features. Our work implements a novel form attention and shows that evolutionary algorithms are a valuable addition to machine learning in the deep learning era, both for reducing the number of parameters for facial expression recognition and for providing interpretable features that can help reduce bias.

Read more
Neural And Evolutionary Computing

Deep Learning in Target Space

Deep learning uses neural networks which are parameterised by their weights. The neural networks are usually trained by tuning the weights to directly minimise a given loss function. In this paper we propose to reparameterise the weights into targets for the firing strengths of the individual nodes in the network. Given a set of targets, it is possible to calculate the weights which make the firing strengths best meet those targets. It is argued that using targets for training addresses the problem of exploding gradients, by a process which we call cascade untangling, and makes the loss-function surface smoother to traverse, and so leads to easier, faster training, and also potentially better generalisation, of the neural network. It also allows for easier learning of deeper and recurrent network structures. The necessary conversion of targets to weights comes at an extra computational expense, which is in many cases manageable. Learning in target space can be combined with existing neural-network optimisers, for extra gain. Experimental results show the speed of using target space, and examples of improved generalisation, for fully-connected networks and convolutional networks, and the ability to recall and process long time sequences and perform natural-language processing with recurrent networks.

Read more
Neural And Evolutionary Computing

Deep Learning of Individual Aesthetics

Accurate evaluation of human aesthetic preferences represents a major challenge for creative evolutionary and generative systems research. Prior work has tended to focus on feature measures of the artefact, such as symmetry, complexity and coherence. However, research models from Psychology suggest that human aesthetic experiences encapsulate factors beyond the artefact, making accurate computational models very difficult to design. The interactive genetic algorithm (IGA) circumvents the problem through human-in-the-loop, subjective evaluation of aesthetics, but is limited due to user fatigue and small population sizes. In this paper we look at how recent advances in deep learning can assist in automating personal aesthetic judgement. Using a leading artist's computer art dataset, we investigate the relationship between image measures, such as complexity, and human aesthetic evaluation. We use dimension reduction methods to visualise both genotype and phenotype space in order to support the exploration of new territory in a generative system. Convolutional Neural Networks trained on the artist's prior aesthetic evaluations are used to suggest new possibilities similar or between known high quality genotype-phenotype mappings. We integrate this classification and discovery system into a software tool for evolving complex generative art and design.

Read more
Neural And Evolutionary Computing

Deep Learning: Our Miraculous Year 1990-1991

In 2020-2021, we are celebrating that many of the basic ideas behind the deep learning revolution were published three decades ago within fewer than 12 months in our "Annus Mirabilis" or "Miraculous Year" 1990-1991 at TU Munich. Back then, few people were interested, but a quarter century later, neural networks based on these ideas were on over 3 billion devices such as smartphones, and used many billions of times per day, consuming a significant fraction of the world's compute.

Read more
Neural And Evolutionary Computing

Deep Reinforcement Learning for Combinatorial Optimization: Covering Salesman Problems

This paper introduces a new deep learning approach to approximately solve the Covering Salesman Problem (CSP). In this approach, given the city locations of a CSP as input, a deep neural network model is designed to directly output the solution. It is trained using the deep reinforcement learning without supervision. Specifically, in the model, we apply the Multi-head Attention to capture the structural patterns, and design a dynamic embedding to handle the dynamic patterns of the problem. Once the model is trained, it can generalize to various types of CSP tasks (different sizes and topologies) with no need of re-training. Through controlled experiments, the proposed approach shows desirable time complexity: it runs more than 20 times faster than the traditional heuristic solvers with a tiny gap of optimality. Moreover, it significantly outperforms the current state-of-the-art deep learning approaches for combinatorial optimization in the aspect of both training and inference. In comparison with traditional solvers, this approach is highly desirable for most of the challenging tasks in practice that are usually large-scale and require quick decisions.

Read more
Neural And Evolutionary Computing

Deep Residual Learning in Spiking Neural Networks

Deep Spiking Neural Networks (SNNs) present optimization difficulties for gradient-based approaches due to discrete binary activation and complex spatial-temporal dynamics. Considering the huge success of ResNet in deep learning, it would be natural to train deep SNNs with residual learning. Previous Spiking ResNet mimics the standard residual block in ANNs and simply replaces ReLU activation layers with spiking neurons, which suffers the degradation problem and can hardly implement residual learning. In this paper, we propose the spike-element-wise (SEW) ResNet to realize residual learning in deep SNNs. We prove that the SEW ResNet can easily implement identity mapping and overcome the vanishing/exploding gradient problems of Spiking ResNet. We evaluate our SEW ResNet on ImageNet and DVS Gesture datasets, and show that SEW ResNet outperforms the state-of-the-art directly trained SNNs in both accuracy and time-steps. Moreover, SEW ResNet can achieve higher performance by simply adding more layers, providing a simple method to train deep SNNs. To our best knowledge, this is the first time that directly training deep SNNs with more than 100 layers becomes possible.

Read more
Neural And Evolutionary Computing

Demonstrating the Evolution of GANs through t-SNE

Generative Adversarial Networks (GANs) are powerful generative models that achieved strong results, mainly in the image domain. However, the training of GANs is not trivial, presenting some challenges tackled by different strategies. Evolutionary algorithms, such as COEGAN, were recently proposed as a solution to improve the GAN training, overcoming common problems that affect the model, such as vanishing gradient and mode collapse. In this work, we propose an evaluation method based on t-distributed Stochastic Neighbour Embedding (t-SNE) to assess the progress of GANs and visualize the distribution learned by generators in training. We propose the use of the feature space extracted from trained discriminators to evaluate samples produced by generators and from the input dataset. A metric based on the resulting t-SNE maps and the Jaccard index is proposed to represent the model quality. Experiments were conducted to assess the progress of GANs when trained using COEGAN. The results show both by visual inspection and metrics that the Evolutionary Algorithm gradually improves discriminators and generators through generations, avoiding problems such as mode collapse.

Read more
Neural And Evolutionary Computing

Device-aware inference operations in SONOS nonvolatile memory arrays

Non-volatile memory arrays can deploy pre-trained neural network models for edge inference. However, these systems are affected by device-level noise and retention issues. Here, we examine damage caused by these effects, introduce a mitigation strategy, and demonstrate its use in fabricated array of SONOS (Silicon-Oxide-Nitride-Oxide-Silicon) devices. On MNIST, fashion-MNIST, and CIFAR-10 tasks, our approach increases resilience to synaptic noise and drift. We also show strong performance can be realized with ADCs of 5-8 bits precision.

Read more

Ready to get started?

Join us today