Featured Researches

Systems And Control

Data-Injection Attacks

In this chapter we review some of the basic attack constructions that exploit a stochastic description of the state variables. We pose the state estimation problem in a Bayesian setting and cast the bad data detection procedure as a Bayesian hypothesis testing problem. This revised detection framework provides the benchmark for the attack detection problem that limits the achievable attack disruption. Indeed, the trade-off between the impact of the attack, in terms of disruption to the state estimator, and the probability of attack detection is analytically characterized within this Bayesian attack setting. We then generalize the attack construction by considering information-theoretic measures that place fundamental limits to a broad class of detection, estimation, and learning techniques. Because the attack constructions proposed in this chapter rely on the attacker having access to the statistical structure of the random process describing the state variables, we conclude by studying the impact of imperfect statistics on the attack performance. Specifically, we study the attack performance as a function of the size of the training data set that is available to the attacker to estimate the second-order statistics of the state variables.

Read more
Systems And Control

Data-driven estimation of the maximum sampling interval: analysis and controller design for discrete-time systems

This article is concerned with data-driven analysis of discrete-time systems under aperiodic sampling, and in particular with a data-driven estimation of the maximum sampling interval (MSI). The MSI is relevant for analysis of and controller design for cyber-physical, embedded and networked systems, since it gives a limit on the time span between sampling instants such that stability is guaranteed. We propose tools to compute the MSI for a given controller and to design a controller with a preferably large MSI, both directly from a finite-length, noise-corrupted state-input trajectory of the system. We follow two distinct approaches for stability analysis, one taking a robust control perspective and the other a switched systems perspective on the aperiodically sampled system. In a numerical example and a subsequent discussion, we demonstrate the efficacy of our developed tools and compare the two approaches.

Read more
Systems And Control

Data-driven sparse polynomial chaos expansion for models with dependent inputs

Polynomial chaos expansions (PCEs) have been used in many real-world engineering applications to quantify how the uncertainty of an output is propagated from inputs. PCEs for models with independent inputs have been extensively explored in the literature. Recently, different approaches have been proposed for models with dependent inputs to expand the use of PCEs to more real-world applications. Typical approaches include building PCEs based on the Gram-Schmidt algorithm or transforming the dependent inputs into independent inputs. However, the two approaches have their limitations regarding computational efficiency and additional assumptions about the input distributions, respectively. In this paper, we propose a data-driven approach to build sparse PCEs for models with dependent inputs. The proposed algorithm recursively constructs orthonormal polynomials using a set of monomials based on their correlations with the output. The proposed algorithm on building sparse PCEs not only reduces the number of minimally required observations but also improves the numerical stability and computational efficiency. Four numerical examples are implemented to validate the proposed algorithm.

Read more
Systems And Control

Decentralized Age-of-Information Bandits

Age-of-Information (AoI) is a performance metric for scheduling systems that measures the freshness of the data available at the intended destination. AoI is formally defined as the time elapsed since the destination received the recent most update from the source. We consider the problem of scheduling to minimize the cumulative AoI in a multi-source multi-channel setting. Our focus is on the setting where channel statistics are unknown and we model the problem as a distributed multi-armed bandit problem. For an appropriately defined AoI regret metric, we provide analytical performance guarantees of an existing UCB-based policy for the distributed multi-armed bandit problem. In addition, we propose a novel policy based on Thomson Sampling and a hybrid policy that tries to balance the trade-off between the aforementioned policies. Further, we develop AoI-aware variants of these policies in which each source takes its current AoI into account while making decisions. We compare the performance of various policies via simulations.

Read more
Systems And Control

Decision Support System for an Intelligent Operator of Utility Tunnel Boring Machines

In tunnel construction projects, delays induce high costs. Thus, tunnel boring machines (TBM) operators aim for fast advance rates, without safety compromise, a difficult mission in uncertain ground environments. Finding the optimal control parameters based on the TBM sensors' measurements remains an open research question with large practical relevance. In this paper, we propose an intelligent decision support system developed in three steps. First past projects performances are evaluated with an optimality score, taking into account the advance rate and the working pressure safety. Then, a deep learning model learns the mapping between the TBM measurements and this optimality score. Last, in real application, the model provides incremental recommendations to improve the optimality, taking into account the current setting and measurements of the TBM. The proposed approach is evaluated on real micro-tunnelling project and demonstrates great promises for future projects.

Read more
Systems And Control

Deep Ensemble Learning-based Approach to Real-time Power System State Estimation

Power system state estimation (PSSE) is commonly formulated as weighted least-square (WLS) algorithm and solved using iterative methods such as Gauss-Newton methods. However, iterative methods have become more sensitive to system operating conditions than ever before due to the deployment of intermittent renewable energy sources, low carbon technologies (e.g., electric vehicles), and demand response programs. Appropriate PSSE approaches are required to avoid pitfalls of the WLS-based PSSE computations for accurate prediction of operating conditions. This paper proposes a data-driven real-time PSSE using a deep ensemble learning algorithm. In the proposed approach, the ensemble learning setup is formulated with dense residual neural networks as base-learners and multivariate-linear regressor as meta-learner. Historical measurements and states are utilised to train and test the model. The trained model can be used in real-time to estimate power system states (voltage magnitudes and phase angles) using real-time measurements. Most of current data-driven PSSE methods assume the availability of a complete set of measurements, which may not be the case in real power system data-acquisition. This paper adopts multivariate linear regression to forecast system states for instants of missing measurements to assist the proposed PSSE technique. Case studies are performed on various IEEE standard benchmark systems to validate the proposed approach. The results show that the proposed approach outperforms existing data-driven PSSE methods techniques.

Read more
Systems And Control

Deep Reinforcement Learning for DER Cyber-Attack Mitigation

The increasing penetration of DER with smart-inverter functionality is set to transform the electrical distribution network from a passive system, with fixed injection/consumption, to an active network with hundreds of distributed controllers dynamically modulating their operating setpoints as a function of system conditions. This transition is being achieved through standardization of functionality through grid codes and/or international standards. DER, however, are unique in that they are typically neither owned nor operated by distribution utilities and, therefore, represent a new emerging attack vector for cyber-physical attacks. Within this work we consider deep reinforcement learning as a tool to learn the optimal parameters for the control logic of a set of uncompromised DER units to actively mitigate the effects of a cyber-attack on a subset of network DER.

Read more
Systems And Control

DeepOPF+: A Deep Neural Network Approach for DC Optimal Power Flow for Ensuring Feasibility

Deep Neural Networks (DNNs) approaches for the Optimal Power Flow (OPF) problem received considerable attention recently. A key challenge of these approaches lies in ensuring the feasibility of the predicted solutions to physical system constraints. Due to the inherent approximation errors, the solutions predicted by DNNs may violate the operating constraints, e.g., the transmission line capacities, limiting their applicability in practice. To address this challenge, we develop DeepOPF+ as a DNN approach based on the so-called "preventive" framework. Specifically, we calibrate the generation and transmission line limits used in the DNN training, thereby anticipating approximation errors and ensuring that the resulting predicted solutions remain feasible. We theoretically characterize the calibration magnitude necessary for ensuring universal feasibility. Our DeepOPF+ approach improves over existing DNN-based schemes in that it ensures feasibility and achieves a consistent speed up performance in both light-load and heavy-load regimes. Detailed simulation results on a range of test instances show that the proposed DeepOPF+ generates 100% feasible solutions with minor optimality loss. Meanwhile, it achieves a computational speedup of two orders of magnitude compared to state-of-the-art solvers.

Read more
Systems And Control

DeepScaleTool : A Tool for the Accurate Estimation of Technology Scaling in the Deep-Submicron Era

The estimation of classical CMOS "constant-field" or "Dennard" scaling methods that define scaling factors for various dimensional and electrical parameters have become less accurate in the deep-submicron regime, which drives the need for better estimation approaches especially in the educational and research domains. We present DeepScaleTool, a tool for the accurate estimation of deep-submicron technology scaling by modeling and curve fitting published data by a leading commercial fabrication company for silicon fabrication technology generations from 130~nm to 7~nm for the key parameters of area, delay, and energy. Compared to 10~nm--7~nm scaling data published by a leading foundry, the DeepScaleTool achieves an error of 1.7% in area, 2.5% in delay, and 5% in power. This compares favorably with another leading academic estimation method that achieves an error of 24% in area, 9.1% in delay, and 24.9% in power.

Read more
Systems And Control

Delay Compensation for Regular Linear Systems

This is the third part of four series papers, aiming at the delay compensation for the abstract linear system (A,B,C). Both the input delay and output delay are investigated. We first propose a full state feedback control to stabilize the system (A,B) with input delay and then design a Luenberger-like observer for the system (A,C) in terms of the delayed output. We formulate the delay compensation in the framework of regular linear systems. The developed approach builds upon an upper-block-triangle transform that is associated with a Sylvester operator equation. It is found that the controllability/observability map of system (-A,B)/(-A,-C) happens to be the solution of the corresponding Sylvester equation. As an immediate consequence, both the feedback law and the state observer can be expressed explicitly in the operator form. The exponential stability of the resulting closed-loop system and the exponential convergence of the observation error are established without using the Lyapunov functional approach. The theoretical results are validated through the delay compensation for a benchmark one-dimensional wave equation.

Read more

Ready to get started?

Join us today