Featured Researches

Optimization And Control

Bandit Online Learning of Nash Equilibria in Monotone Games

We address online bandit learning of Nash equilibria in multi-agent convex games. We propose an algorithm whereby each agent uses only obtained values of her cost function at each joint played action, lacking any information of the functional form of her cost or other agents' costs or strategies. In contrast to past work where convergent algorithms required strong monotonicity, we prove that the algorithm converges to a Nash equilibrium under mere monotonicity assumption. The proposed algorithm extends the applicability of bandit learning in several games including zero-sum convex games with possibly unbounded action spaces, mixed extension of finite-action zero-sum games, as well as convex games with linear coupling constraints.

Read more
Optimization And Control

Between steps: Intermediate relaxations between big-M and convex hull formulations

This work develops a class of relaxations in between the big-M and convex hull formulations of disjunctions, drawing advantages from both. The proposed "P-split" formulations split convex additively separable constraints into P partitions and form the convex hull of the partitioned disjuncts. Parameter P represents the trade-off of model size vs. relaxation strength. We examine the novel formulations and prove that, under certain assumptions, the relaxations form a hierarchy starting from a big-M equivalent and converging to the convex hull. We computationally compare the proposed formulations to big-M and convex hull formulations on a test set including: K-means clustering, P_ball problems, and ReLU neural networks. The computational results show that the intermediate P-split formulations can form strong outer approximations of the convex hull with fewer variables and constraints than the extended convex hull formulations, giving significant computational advantages over both the big-M and convex hull.

Read more
Optimization And Control

Beyond Persistent Excitation: Online Experiment Design for Data-Driven Modeling and Control

This paper presents a new experiment design method for data-driven modeling and control. The idea is to select inputs online (using past input/output data), leading to desirable rank properties of data Hankel matrices. In comparison to the classical persistency of excitation condition, this online approach requires less data samples and is even shown to be completely sample efficient.

Read more
Optimization And Control

Bilinear Optimal Control of an Advection-reaction-diffusion System

We consider the bilinear optimal control of an advection-reaction-diffusion system, where the control arises as the velocity field in the advection term. Such a problem is generally challenging from both theoretical analysis and algorithmic design perspectives mainly because the state variable depends nonlinearly on the control variable and an additional divergence-free constraint on the control is coupled together with the state equation. Mathematically, the proof of the existence of optimal solutions is delicate, and up to now, only some results are known for a few special cases where additional restrictions are imposed on the space dimension and the regularity of the control. We prove the existence of optimal controls and derive the first-order optimality conditions in general settings without any extra assumption. Computationally, the well-known conjugate gradient (CG) method can be applied conceptually. However, due to the additional divergence-free constraint on the control variable and the nonlinear relation between the state and control variables, it is challenging to compute the gradient and the optimal stepsize at each CG iteration, and thus nontrivial to implement the CG method. To address these issues, we advocate a fast inner preconditioned CG method to ensure the divergence-free constraint and an efficient inexactness strategy to determine an appropriate stepsize. An easily implementable nested CG method is thus proposed for solving such a complicated problem. For the numerical discretization, we combine finite difference methods for the time discretization and finite element methods for the space discretization. Efficiency of the proposed nested CG method is promisingly validated by the results of some preliminary numerical experiments.

Read more
Optimization And Control

Binary Mean Field Stochastic Games: Stationary Equilibria and Comparative Statics

This paper considers mean field games in a multi-agent Markov decision process (MDP) framework. Each player has a continuum state and binary action, and benefits from the improvement of the condition of the overall population. Based on an infinite horizon discounted individual cost, we show existence of a stationary equilibrium, and prove its uniqueness under a positive externality condition. We further analyze comparative statics of the stationary equilibrium by quantitatively determining the impact of the effort cost.

Read more
Optimization And Control

Blended Dynamics Approach to Distributed Optimization: Sum Convexity and Convergence Rate

This paper studies the application of the blended dynamics approach towards distributed optimization problem where the global cost function is given by a sum of local cost functions. The benefits include (i) individual cost function need not be convex as long as the global cost function is strongly convex and (ii) the convergence rate of the distributed algorithm is arbitrarily close to the convergence rate of the centralized one. Two particular continuous-time algorithms are presented using the proportional-integral-type couplings. One has benefit of `initialization-free,' so that agents can join or leave the network during the operation. The other one has the minimal amount of communication information. After presenting a general theorem that can be used for designing distributed algorithms, we particularly present a distributed heavy-ball method and discuss its strength over other methods.

Read more
Optimization And Control

Boundary Conditions for Linear Exit Time Gradient Trajectories Around Saddle Points: Analysis and Algorithm

Gradient-related first-order methods have become the workhorse of large-scale numerical optimization problems. Many of these problems involve nonconvex objective functions with multiple saddle points, which necessitates an understanding of the behavior of discrete trajectories of first-order methods within the geometrical landscape of these functions. This paper concerns convergence of first-order discrete methods to a local minimum of nonconvex optimization problems that comprise strict saddle points within the geometrical landscape. To this end, it focuses on analysis of discrete gradient trajectories around saddle neighborhoods, derives sufficient conditions under which these trajectories can escape strict-saddle neighborhoods in linear time, explores the contractive and expansive dynamics of these trajectories in neighborhoods of strict-saddle points that are characterized by gradients of moderate magnitude, characterizes the non-curving nature of these trajectories, and highlights the inability of these trajectories to re-enter the neighborhoods around strict-saddle points after exiting them. Based on these insights and analyses, the paper then proposes a simple variant of the vanilla gradient descent algorithm, termed Curvature Conditioned Regularized Gradient Descent (CCRGD) algorithm, which utilizes a check for an initial boundary condition to ensure its trajectories can escape strict-saddle neighborhoods in linear time. Convergence analysis of the CCRGD algorithm, which includes its rate of convergence to a local minimum within a geometrical landscape that has a maximum number of strict-saddle points, is also presented in the paper. Numerical experiments are then provided on a test function as well as a low-rank matrix factorization problem to evaluate the efficacy of the proposed algorithm.

Read more
Optimization And Control

Boundary Control of the Beam Equation by Linear Quadratic Regulation

We present and solve a Linear Quadratic Regulator (LQR) for the boundary control of the beam equation. We use the simple technique of completing the square to get an explicit solution. By decoupling the spatial frequencies we are able to reduce an infinite dimensional LQR to an infinte family of two two dimensional LQRs each of which can be solved explicitly.

Read more
Optimization And Control

Boundary Control of the Wave Equation via Linear Quadatic Regulation

We consider the Linear Quadratic Regulation for the boundary control of the one dimensional linear wave equation under both Dirichlet and Neumann activation. For each activation we present a Riccati partial differential equation that we explicitly solve. The derivation the Riccati partial differential equations is by the simple and explicit technique of completing the square.

Read more
Optimization And Control

Bregman Finito/MISO for nonconvex regularized finite sum minimization without Lipschitz gradient continuity

We introduce two algorithms for nonconvex regularized finite sum minimization, where typical Lipschitz differentiability assumptions are relaxed to the notion of relative smoothness. The first one is a Bregman extension of Finito/MISO, studied for fully nonconvex problems when the sampling is random, or under convexity of the nonsmooth term when it is essentially cyclic. The second algorithm is a low-memory variant, in the spirit of SVRG and SARAH, that also allows for fully nonconvex formulations. Our analysis is made remarkably simple by employing a Bregman Moreau envelope as Lyapunov function. In the randomized case, linear convergence is established when the cost function is strongly convex, yet with no convexity requirements on the individual functions in the sum. For the essentially cyclic and low-memory variants, global and linear convergence results are established when the cost function satisfies the Kurdyka-?ojasiewicz property.

Read more

Ready to get started?

Join us today