Featured Researches

Popular Physics

Achieving the required mobility in the solar system through Direct Fusion Drive

To develop a spacefaring civilization, humankind must develop technologies which enable safe, affordable and repeatable mobility through the solar system. One such technology is nuclear fusion propulsion which is at present under study mostly as a breakthrough toward the first interstellar probes. The aim of the present paper is to show that fusion drive is even more important in human planetary exploration and constitutes the natural solution to the problem of exploring and colonizing the solar system.

Read more
Popular Physics

Acoustics of Margravial Opera House Bayreuth

The Margravial Opera House Bayreuth, built between 1745 and 1750, is a well preserved Baroque court theatre designed by Giuseppe Galli Bibiena [1]. It provides an opportunity to experience not only the visual but also the acoustic design of opera theatres in the 18th century, as the bell-shaped auditorium along with the decoratively painted canvas remains intact. Using balloons and hand-claps as sound sources, we characterize the impulse response of this opera house after its recent renovation. The reverberation time (RT), early decay time (EDT) and clarity factor are characterized and discussed in comparison to historical Italian theatres of a similar age.

Read more
Popular Physics

Advanced Aspects of the Galactic Habitability

Context. Astrobiological evolution of the Milky Way (or the shape of its "astrobiological landscape") has emerged as one of the key research topics in recent years. In order to build precise, quantitative models of the Galactic habitability, we need to account for two opposing tendencies of life and intelligence in the most general context: the tendency to spread to all available ecological niches (conventionally dubbed "colonization") and the tendency to succumb to various types of existential catastrophes ("catastrophism"). These evolutionary tendencies have become objects of study in fields such as ecology, macroevolution, risk analysis, and futures studies, while a serious astrobiological treatment has been lacking so far. Aims. Our aim is to numerically investigate the dynamics of opposed processes of expansion (panspermia, colonization) and extinction (catastrophic mechanisms) of life in the Galaxy. Methods. We employ a new type of numerical simulation based on 1D probabilistic cellular automaton with very high temporal resolution, in order to study astrobiological dynamics. Results. While the largest part of the examined parameter space shows very low habitability values, as expected, the remaining part has some observationally appealing features that imply, among other things, a reduction in the amount of fine-tuning necessary for resolving the Fermi paradox. Conclusions. Advanced aspects of Galactic habitability are amenable to precision studies using massive parallel computer simulations. There are regions of parameter space corresponding to a quasi-stationary state satisfying observable constraints and possessing viable SETI targets.

Read more
Popular Physics

Affordable, Rapid Bootstrapping of the Space Industry and Solar System Civilization

Advances in robotics and additive manufacturing have become game-changing for the prospects of space industry. It has become feasible to bootstrap a self-sustaining, self-expanding industry at reasonably low cost. Simple modeling was developed to identify the main parameters of successful bootstrapping. This indicates that bootstrapping can be achieved with as little as 12 metric tons (MT) landed on the Moon during a period of about 20 years. The equipment will be teleoperated and then transitioned to full autonomy so the industry can spread to the asteroid belt and beyond. The strategy begins with a sub-replicating system and evolves it toward full self-sustainability (full closure) via an in situ technology spiral. The industry grows exponentially due to the free real estate, energy, and material resources of space. The mass of industrial assets at the end of bootstrapping will be 156 MT with 60 humanoid robots, or as high as 40,000 MT with as many as 100,000 humanoid robots if faster manufacturing is supported by launching a total of 41 MT to the Moon. Within another few decades with no further investment, it can have millions of times the industrial capacity of the United States. Modeling over wide parameter ranges indicates this is reasonable, but further analysis is needed. This industry promises to revolutionize the human condition.

Read more
Popular Physics

Air modes of the Bacon internal resonator banjo

Sound measurements on a sequence of related, similar constructions with slightly different dimensions confirm a simple picture of the air modes of the internal resonator banjo's body. For the purpose of this study, the air modes are decoupled from the soundboard (i.e., [drum] head) modes by replacing the head with 3/4" plywood. The resulting characteristic features survive the strong coupling of the air modes to the head and are in accord with the qualitative distinctions recognized by banjo players.

Read more
Popular Physics

Alternative Standard Frequencies for Interstellar Communication

The 21 cm hydrogen line is considered a favourable frequency by the SETI programme in their search for signals from potential extra-terrestrial civilizations. The Pioneer plaque, attached to the Pioneer 10 and Pioneer 11 spacecraft, portrays the hyperfine transition of neutral hydrogen and used the wavelength as a standard scale of measurement.Although this line would be universally recognized and is a suitable wavelength to look for radio signals from extraterrestrials, the presence of ubiquitous radiation from galactic hydrogen could make searches a little difficult. In this paper we suggest several alternate standard frequencies which is free of interference from atomic or molecular sources and is independent of any bias.

Read more
Popular Physics

An Aerodynamic Analysis of Recent FIFA World Cup Balls

Drag and lift coefficients of recent FIFA world cup balls are examined. We fit a novel functional form to drag coefficient curves and in the absence of empirical data provide estimates of lift coefficient behaviour via a consideration of the physics of the boundary layer. Differences in both these coefficients for recent balls, which result from surface texture modification, can significantly alter trajectories. Numerical simulations are used to quantify the effect these changes have on the flight paths of various balls. Altitude and temperature variations at recent world cup events are also discussed. We conclude by quantifying the influence these variations have on the three most recent world cup balls, the Brazuca, the Jabulani and the Teamgeist. While our paper presents findings of interest to the professional sports scientist, it remains accessible to students at the undergraduate level.

Read more
Popular Physics

An Artificially-intelligent Means to Escape Discreetly from the Departmental Holiday Party; guide for the socially awkward

We employ simulated annealing to identify the global solution of a dynamical model, to make a favorable impression upon colleagues at the departmental holiday party and then exit undetected as soon as possible. The procedure, Gradual Freeze-out of an Optimal Estimation via Optimization of Parameter Quantification - GFOOEOPQ, is designed for the socially awkward. The socially awkward among us possess little instinct for pulling off such a maneuver, and may benefit from a machine to do it for us. The method rests upon Bayes' Theorem, where the probability of a future model state depends on current knowledge of the model. Here, model state vectors are party attendees, and the future event of interest is their disposition toward us at times following the party. We want these dispositions to be favorable. To this end, we first interact so as to make favorable impressions, or at least ensure that these people remember having seen us there. Then we identify the exit that minimizes the chance that anyone notes how early we high-tailed it. Now, poorly-resolved estimates will correspond to degenerate solutions. As noted, we possess no instinct to identify a global optimum by ourselves. This can have disastrous consequences. For this reason, GFOOEOPQ employs annealing to iteratively home in on this optimum. The method is illustrated via a simulated event hosted by someone in the physics department (I am not sure who), in a two-bedroom apartment on the fifth floor of an elevator building in Manhattan, with viable Exit parameters: front door, side door to a stairwell, fire escape, and a bathroom window that opens onto the fire escape. Preliminary tests are reported at two real social celebrations. The procedure is generalizable to corporate events and family gatherings. Readers are encouraged to report novel applications of GFOOEOPQ, to expand the algorithm.

Read more
Popular Physics

An approximation to determine the source of the WOW! Signal

In this paper it is analysed which of the thousands of stars in the WOW! Signal region could have the highest chance of being the real source of the signal, providing that it came from a star system similar to ours. A total of 66 G and K-type stars are sampled, but only one of them is identified as a potential Sun-like star considering the available information in the Gaia Archive. This candidate source, which is named 2MASS 19281982-2640123, therefore becomes an ideal target to conduct observations in the search for potentially habitable exoplanets. Another two candidate stars have a luminosity error interval that includes the luminosity of the Sun, and 14 candidates more are also identified as potential Sun-like stars, but the estimations on their luminosity were unknown.

Read more
Popular Physics

An estimation of the Moon radius by counting craters: a generalization of Monte-Carlo calculation of π to spherical geometry

By applying Monte-Carlo method, the Moon radius is obtained by counting craters in a spherical square over the surface of it. As it is well known, approximate values for π can be obtained by counting random numbers in a square and in a quarter of circle inscribed in it in Euclidean geometry. This procedure can be extend it to spherical geometry, where new relations between the areas of a spherical square and the quarter of circle inscribed in it are obtained. When the radius of the sphere is larger than the radius of the quarter of circle, Euclidean geometry is recovered and the ratio of the areas tends to π . Using these results, theoretical deviations of π due to the Moon radius R are computed. In order to obtain this deviation, a spherical square is selected located in a great circle of the Moon. The random points over the spherical square are given by a specific zone of the Moon where craters are distributed almost randomly. Computing the ratio of the areas, the deviation of π allows us to obtain the Moon radius with an intrinsic error given by the finite number of random craters.

Read more

Ready to get started?

Join us today