Featured Researches

Neurons And Cognition

An information-theoretic framework to measure the dynamic interaction between neural spike trains

Understanding the interaction patterns among simultaneous recordings of spike trains from multiple neuronal units is a key topic in neuroscience. However, an optimal approach of assessing these interactions has not been established, as existing methods either do not consider the inherent point process nature of spike trains or are based on parametric assumptions that may lead to wrong inferences if not met. This work presents a framework, grounded in the field of information dynamics, for the model-free, continuous-time estimation of both undirected (symmetric) and directed (causal) interactions between pairs of spike trains. The framework decomposes the overall information exchanged dynamically between two point processes X and Y as the sum of the dynamic mutual information (dMI) between the histories of X and Y, plus the transfer entropy (TE) along the directions X->Y and Y->X. Building on recent work which derived theoretical expressions and consistent estimators for the TE in continuous time, we develop algorithms for estimating efficiently all measures in our framework through nearest neighbor statistics. These algorithms are validated in simulations of independent and coupled spike train processes, showing the accuracy of dMI and TE in the assessment of undirected and directed interactions even for weakly coupled and short realizations, and proving the superiority of the continuous-time estimator over the discrete-time method. Then, the usefulness of the framework is illustrated in a real data scenario of recordings from in-vitro preparations of spontaneously-growing cultures of cortical neurons, where we show the ability of dMI and TE to identify how the networks of undirected and directed spike train interactions change their topology through maturation of the neuronal cultures.

Read more
Neurons And Cognition

An optimized pipeline for functional connectivity analysis in the rat brain

Resting state functional MRI (rs-fMRI) is a widespread and powerful tool for investigating functional connectivity and brain disorders. However, functional connectivity analysis can be seriously affected by random and structured noise from non-neural sources such as physiology. Thus, it is essential to first reduce thermal noise and then correctly identify and remove non-neural artefacts from rs-fMRI signals through optimized data processing methods. However, existing tools that correct for these effects have been developed for human brain and are not readily transposable to rat data. Therefore, the aim of the present study was to establish a data processing pipeline that can robustly remove random and structured noise from rat rs-fMRI data. It includes a novel denoising approach based on the Marchenko-Pastur Principle Component Analysis (MP-PCA) method, FMRIB's ICA-based Xnoiseifier (FIX) for automatic artefact classification and cleaning, and global signal regression. Our results show that: I) MP-PCA denoising substantially improves the temporal signal-to-noise ratio; II) the pre-trained FIX classifier achieves a high accuracy in artefact classification; III) both artefact cleaning and global signal regression are essential steps in minimizing the within-group variability in control animals and identifying functional connectivity changes in a rat model of sporadic Alzheimer's disease, as compared to controls.

Read more
Neurons And Cognition

Analysis and modeling of low frequency local field oscillations in a hippocampus circuit under osmotic challenge: the possible role of arginine vasopressin circuit for hippocampal function

Electrophysiological time series were taken simultaneously in two locations in the hippocampus of a rat brain previously described as receiving innervation from the osmosensitive vasopressinergic neurons of the hypothalamus. A hyperosmotic saline solution injection was administered during the time of the experiment. We analyze the recorded time series using different methods. We detect a modification of the delta and theta oscillations just after the perturbation caused by the injection. We compare the quality and information that each one of the methods exhibit and we analyze the characteristics of the perturbation based on a hypothesis that the strength of the functional connections between the vasopressinergic hypothalamic magnocellular neurons and their target in the hippocampus is modified by the perturbation. We built a model of the hypothetic neural connections and numerically calculate the time series produced by the system when simulating the perturbation caused by the saline injection. The theoretical results resemble the experimental findings concerning the frequency and amplitude alterations of the delta and theta bands.

Read more
Neurons And Cognition

Analysis of Gait-Event-related Brain Potentials During Instructed And Spontaneous Treadmill Walking -- Technical Affordances and used Methods

To improve the understanding of human gait and to facilitate novel developments in gait rehabilitation, the neural correlates of human gait as measured by means of non-invasive electroencephalography (EEG) have been investigated recently. Particularly, gait-related event-related brain potentials (gERPs) may provide information about the functional role of cortical brain regions in human gait control. The purpose of this paper is to explore possible experimental and technical solutions for time-sensitive analysis of human gait-related ERPs during spontaneous and instructed treadmill walking. A solution (HW/SW) for synchronous recording of gait- and EEG data was developed, tested and piloted. The solution consists of a custom-made USB synchronization interface, a time-synchronization module and a data merging module, allowing temporal synchronization of recording devices for time-sensitive extraction of gait markers for analysis of gait-related ERPs and for the training of artificial neural networks. In the present manuscript, the hardware and software components were tested with the following devices: A treadmill with an integrated pressure plate for gait analysis (zebris FDM-T) and an Acticap non-wireless 32-channel EEG-system (Brain Products GmbH). The usability and validity of the developed solution was tested in a pilot study (n = 3 healthy participants, n=3 females, mean age = 22.75 years). Recorded EEG data was segmented and analyzed according to the detected gait markers for the analysis of gait-related ERPs. Finally, EEG periods were used to train a deep learning artificial neural network as classifier of gait phases. The results obtained in this pilot study, although preliminary, support the feasibility of the solution for the application of gait-related EEG analysis..

Read more
Neurons And Cognition

Analysis of Relation between Motor Activity and Imaginary EEG Records

Electroencephalography (EEG) signals signals are often used to learn about brain structure and to learn what thinking. EEG signals can be easily affected by external factors. For this reason, they should be applied various pre-process during their analysis. In this study, it is used the EEG signals received from 109 subjects when opening and closing their right or left fists and performing hand and foot movements and imagining the same movements. The relationship between motor activities and imaginary of that motor activities were investigated. Algorithms with high performance rates have been used for feature extraction , selection and classification using the nearest neighbour algorithm.

Read more
Neurons And Cognition

Anticipated synchronization in human EEG data: unidirectional causality with negative phase-lag

Understanding the functional connectivity of the brain has become a major goal of neuroscience. In many situatons, the relative phase difference, together with coherence patterns, have been employed to infer the direction of the information flow. However, it has been recently shown in local field potential data from monkeys the existence of a synchronized regime in which unidirectionally coupled areas can present both positive and negative phase differences. During the counterintuitive regime, called anticipated synchronization (AS), the phase difference does not reflect the causality. Here we investigate coherence and causality at the alpha frequency band (10 Hz) between pairs of electroencephalogram (EEG) electrodes in humans during a GO/NO-GO task. We show that human EEG signals can exhibit anticipated synchronization, which is characterized by a unidirectional influence from an electrode A to an electrode B, but the electrode B leads the electrode A in time. To the best of our knowledge, this is the first verification of AS in EEG signals and in the human brain. The usual delayed synchronization (DS) regime is also present between many pairs. DS is characterized by a unidirectional influence from an electrode A to an electrode B and a positive phase difference between A and B which indicates that the electrode A leads the electrode B in time. Moreover, we show that EEG signals exhibit diversity in phase relations: the pairs of electrodes can present in-phase, anti-phase, or out-of-phase synchronization with a similar distribution of positive and negative phase differences.

Read more
Neurons And Cognition

Anticipation in architectural experience: a computational neurophenomenology for architecture?

The perceptual experience of architecture is enacted by the sensory and motor system. When we act, we change the perceived environment according to a set of expectations that depend on our body and the built environment. The continuous process of collecting sensory information is thus based on bodily affordances. Affordances characterize the fit between the physical structure of the body and capacities for movement in the built environment. Since little has been done regarding the role of architectural design in the emergence of perceptual experience on a neuronal level, this paper offers a first step towards the role of architectural design in perceptual experience. An approach to synthesize concepts from computational neuroscience with architectural phenomenology into a computational neurophenomenology is considered. The outcome is a framework under which studies of architecture and cognitive neuroscience can be cast.

Read more
Neurons And Cognition

App-based saccade latency and error determination across the adult age spectrum

We aid in neurocognitive monitoring outside the hospital environment by enabling app-based measurements of visual reaction time (saccade latency) and error rate in a cohort of subjects spanning the adult age spectrum. Methods: We developed an iOS app to record subjects with the frontal camera during pro- and anti-saccade tasks. We further developed automated algorithms for measuring saccade latency and error rate that take into account the possibility that it might not always be possible to determine the eye movement from app-based recordings. Results: To measure saccade latency on a tablet, we ensured that the absolute timing error between on-screen task presentation and the camera recording is within 5 ms. We collected over 235,000 eye movements in 80 subjects ranging in age from 20 to 92 years, with 96% of recorded eye movements either declared good or directional errors. Our error detection code achieved a sensitivity of 0.97 and a specificity of 0.97. Confirming prior reports, we observed a positive correlation between saccade latency and age while the relationship between error rate and age was not significant. Finally, we observed significant intra- and inter-subject variations in saccade latency and error rate distributions, which highlights the importance of individualized tracking of these visual digital biomarkers. Conclusion and Significance: Our system and algorithms allow ubiquitous tracking of saccade latency and error rate, which opens up the possibility of quantifying patient state on a finer timescale in a broader population than previously possible.

Read more
Neurons And Cognition

Application of the hierarchical bootstrap to multi-level data in neuroscience

A common feature in many neuroscience datasets is the presence of hierarchical data structures, most commonly recording the activity of multiple neurons in multiple animals across multiple trials. Accordingly, the measurements constituting the dataset are not independent, even though the traditional statistical analyses often applied in such cases (e.g., Students t-test) treat them as such. The hierarchical bootstrap has been shown to be an effective tool to accurately analyze such data and while it has been used extensively in the statistical literature, its use is not widespread in neuroscience - despite the ubiquity of hierarchical datasets. In this paper, we illustrate the intuitiveness and utility of this approach to analyze hierarchically nested datasets. We use simulated neural data to show that traditional statistical tests can result in a false positive rate of over 45%, even if the Type-I error rate is set at 5%. While summarizing data across non-independent points (or lower levels) can potentially fix this problem, this approach greatly reduces the statistical power of the analysis. The hierarchical bootstrap, when applied sequentially over the levels of the hierarchical structure, keeps the Type-I error rate within the intended bound and retains more statistical power than summarizing methods. We conclude by demonstrating the effectiveness of the method in two real-world examples, first analyzing singing data in male Bengalese finches (Lonchura striata var. domestica) and second quantifying changes in behavior under optogenetic control in flies (Drosophila melanogaster).

Read more
Neurons And Cognition

Applications of optimal nonlinear control to a whole-brain network of FitzHugh-Nagumo oscillators

We apply the framework of optimal nonlinear control to steer the dynamics of a whole-brain network of FitzHugh-Nagumo oscillators. Its nodes correspond to the cortical areas of an atlas-based segmentation of the human cerebral cortex, and the inter-node coupling strengths are derived from Diffusion Tensor Imaging data of the connectome of the human brain. Nodes are coupled using an additive scheme without delays and are driven by background inputs with fixed mean and additive Gaussian noise. Optimal control inputs to nodes are determined by minimizing a cost functional that penalizes the deviations from a desired network dynamic, the control energy, and spatially non-sparse control inputs. Using the strength of the background input and the overall coupling strength as order parameters, the network's state-space decomposes into regions of low and high activity fixed points separated by a high amplitude limit cycle all of which qualitatively correspond to the states of an isolated network node. Along the borders, however, additional limit cycles, asynchronous states and multistability can be observed. Optimal control is applied to several state-switching and network synchronization tasks, and the results are compared to controllability measures from linear control theory for the same connectome. We find that intuitions from the latter about the roles of nodes in steering the network dynamics, which are solely based on connectome features, do not generally carry over to nonlinear systems, as had been previously implied. Instead, the role of nodes under optimal nonlinear control critically depends on the specified task and the system's location in state space. Our results shed new light on the controllability of brain network states and may serve as an inspiration for the design of new paradigms for non-invasive brain stimulation.

Read more

Ready to get started?

Join us today