Featured Researches

Biomolecules

Deep Inverse Reinforcement Learning for Structural Evolution of Small Molecules

The size and quality of chemical libraries to the drug discovery pipeline are crucial for developing new drugs or repurposing existing drugs. Existing techniques such as combinatorial organic synthesis and High-Throughput Screening usually make the process extraordinarily tough and complicated since the search space of synthetically feasible drugs is exorbitantly huge. While reinforcement learning has been mostly exploited in the literature for generating novel compounds, the requirement of designing a reward function that succinctly represents the learning objective could prove daunting in certain complex domains. Generative Adversarial Network-based methods also mostly discard the discriminator after training and could be hard to train. In this study, we propose a framework for training a compound generator and learning a transferable reward function based on the entropy maximization inverse reinforcement learning paradigm. We show from our experiments that the inverse reinforcement learning route offers a rational alternative for generating chemical compounds in domains where reward function engineering may be less appealing or impossible while data exhibiting the desired objective is readily available.

Read more
Biomolecules

Deep Learning and Knowledge-Based Methods for Computer Aided Molecular Design -- Toward a Unified Approach: State-of-the-Art and Future Directions

The optimal design of compounds through manipulating properties at the molecular level is often the key to considerable scientific advances and improved process systems performance. This paper highlights key trends, challenges, and opportunities underpinning the Computer-Aided Molecular Design (CAMD) problems. A brief review of knowledge-driven property estimation methods and solution techniques, as well as corresponding CAMD tools and applications, are first presented. In view of the computational challenges plaguing knowledge-based methods and techniques, we survey the current state-of-the-art applications of deep learning to molecular design as a fertile approach towards overcoming computational limitations and navigating uncharted territories of the chemical space. The main focus of the survey is given to deep generative modeling of molecules under various deep learning architectures and different molecular representations. Further, the importance of benchmarking and empirical rigor in building deep learning models is spotlighted. The review article also presents a detailed discussion of the current perspectives and challenges of knowledge-based and data-driven CAMD and identifies key areas for future research directions. Special emphasis is on the fertile avenue of hybrid modeling paradigm, in which deep learning approaches are exploited while leveraging the accumulated wealth of knowledge-driven CAMD methods and tools.

Read more
Biomolecules

Deep Learning for Virtual Screening: Five Reasons to Use ROC Cost Functions

Computer-aided drug discovery is an essential component of modern drug development. Therein, deep learning has become an important tool for rapid screening of billions of molecules in silico for potential hits containing desired chemical features. Despite its importance, substantial challenges persist in training these models, such as severe class imbalance, high decision thresholds, and lack of ground truth labels in some datasets. In this work we argue in favor of directly optimizing the receiver operating characteristic (ROC) in such cases, due to its robustness to class imbalance, its ability to compromise over different decision thresholds, certain freedom to influence the relative weights in this compromise, fidelity to typical benchmarking measures, and equivalence to positive/unlabeled learning. We also propose new training schemes (coherent mini-batch arrangement, and usage of out-of-batch samples) for cost functions based on the ROC, as well as a cost function based on the logAUC metric that facilitates early enrichment (i.e. improves performance at high decision thresholds, as often desired when synthesizing predicted hit compounds). We demonstrate that these approaches outperform standard deep learning approaches on a series of PubChem high-throughput screening datasets that represent realistic and diverse drug discovery campaigns on major drug target families.

Read more
Biomolecules

Deep Learning in Protein Structural Modeling and Design

Deep learning is catalyzing a scientific revolution fueled by big data, accessible toolkits, and powerful computational resources, impacting many fields including protein structural modeling. Protein structural modeling, such as predicting structure from amino acid sequence and evolutionary information, designing proteins toward desirable functionality, or predicting properties or behavior of a protein, is critical to understand and engineer biological systems at the molecular level. In this review, we summarize the recent advances in applying deep learning techniques to tackle problems in protein structural modeling and design. We dissect the emerging approaches using deep learning techniques for protein structural modeling, and discuss advances and challenges that must be addressed. We argue for the central importance of structure, following the "sequence -> structure -> function" paradigm. This review is directed to help both computational biologists to gain familiarity with the deep learning methods applied in protein modeling, and computer scientists to gain perspective on the biologically meaningful problems that may benefit from deep learning techniques.

Read more
Biomolecules

Deep Learning of Protein Structural Classes: Any Evidence for an 'Urfold'?

Recent computational advances in the accurate prediction of protein three-dimensional (3D) structures from amino acid sequences now present a unique opportunity to decipher the interrelationships between proteins. This task entails--but is not equivalent to--a problem of 3D structure comparison and classification. Historically, protein domain classification has been a largely manual and subjective activity, relying upon various heuristics. Databases such as CATH represent significant steps towards a more systematic (and automatable) approach, yet there still remains much room for the development of more scalable and quantitative classification methods, grounded in machine learning. We suspect that re-examining these relationships via a Deep Learning (DL) approach may entail a large-scale restructuring of classification schemes, improved with respect to the interpretability of distant relationships between proteins. Here, we describe our training of DL models on protein domain structures (and their associated physicochemical properties) in order to evaluate classification properties at CATH's "homologous superfamily" (SF) level. To achieve this, we have devised and applied an extension of image-classification methods and image segmentation techniques, utilizing a convolutional autoencoder model architecture. Our DL architecture allows models to learn structural features that, in a sense, 'define' different homologous SFs. We evaluate and quantify pairwise 'distances' between SFs by building one model per SF and comparing the loss functions of the models. Hierarchical clustering on these distance matrices provides a new view of protein interrelationships--a view that extends beyond simple structural/geometric similarity, and towards the realm of structure/function properties.

Read more
Biomolecules

Deep convolutional networks for quality assessment of protein folds

The computational prediction of a protein structure from its sequence generally relies on a method to assess the quality of protein models. Most assessment methods rank candidate models using heavily engineered structural features, defined as complex functions of the atomic coordinates. However, very few methods have attempted to learn these features directly from the data. We show that deep convolutional networks can be used to predict the ranking of model structures solely on the basis of their raw three-dimensional atomic densities, without any feature tuning. We develop a deep neural network that performs on par with state-of-the-art algorithms from the literature. The network is trained on decoys from the CASP7 to CASP10 datasets and its performance is tested on the CASP11 dataset. On the CASP11 stage 2 dataset, it achieves a loss of 0.064, whereas the best performing method achieves a loss of 0.063. Additional testing on decoys from the CASP12, CAMEO, and 3DRobot datasets confirms that the network performs consistently well across a variety of protein structures. While the network learns to assess structural decoys globally and does not rely on any predefined features, it can be analyzed to show that it implicitly identifies regions that deviate from the native structure.

Read more
Biomolecules

Deep learning based mixed-dimensional GMM for characterizing variability in CryoEM

Structural flexibility and/or dynamic interactions with other molecules is a critical aspect of protein function. CryoEM provides direct visualization of individual macromolecules sampling different conformational and compositional states. While numerous methods are available for computational classification of discrete states, characterization of continuous conformational changes or large numbers of discrete state without human supervision remains challenging. Here we present e2gmm, a machine learning algorithm to determine a conformational landscape for proteins or complexes using a 3-D Gaussian mixture model mapped onto 2-D particle images in known orientations. Using a deep neural network architecture, e2gmm can automatically resolve the structural heterogeneity within the protein complex and map particles onto a small latent space describing conformational and compositional changes. This system presents a more intuitive and flexible representation than other manifold methods currently in use. We demonstrate this method on both simulated data as well as three biological systems, to explore compositional and conformational changes at a range of scales. The software is distributed as part of EMAN2.

Read more
Biomolecules

Deep learning extends de novo protein modelling coverage of genomes using iteratively predicted structural constraints

The inapplicability of amino acid covariation methods to small protein families has limited their use for structural annotation of whole genomes. Recently, deep learning has shown promise in allowing accurate residue-residue contact prediction even for shallow sequence alignments. Here we introduce DMPfold, which uses deep learning to predict inter-atomic distance bounds, the main chain hydrogen bond network, and torsion angles, which it uses to build models in an iterative fashion. DMPfold produces more accurate models than two popular methods for a test set of CASP12 domains, and works just as well for transmembrane proteins. Applied to all Pfam domains without known structures, confident models for 25% of these so-called dark families were produced in under a week on a small 200 core cluster. DMPfold provides models for 16% of human proteome UniProt entries without structures, generates accurate models with fewer than 100 sequences in some cases, and is freely available.

Read more
Biomolecules

Deep learning to generate in silico chemical property libraries and candidate molecules for small molecule identification in complex samples

Comprehensive and unambiguous identification of small molecules in complex samples will revolutionize our understanding of the role of metabolites in biological systems. Existing and emerging technologies have enabled measurement of chemical properties of molecules in complex mixtures and, in concert, are sensitive enough to resolve even stereoisomers. Despite these experimental advances, small molecule identification is inhibited by (i) chemical reference libraries representing <1% of known molecules, limiting the number of possible identifications, and (ii) the lack of a method to generate candidate matches directly from experimental features (i.e. without a library). To this end, we developed a variational autoencoder (VAE) to learn a continuous numerical, or latent, representation of molecular structure to expand reference libraries for small molecule identification. We extended the VAE to include a chemical property decoder, trained as a multitask network, in order to shape the latent representation such that it assembles according to desired chemical properties. The approach is unique in its application to small molecule identification, with its focus on m/z and CCS, paired with its training paradigm, which involved a cascade of transfer learning iterations. This allows the network to learn as much as possible at each stage, enabling success with progressively smaller datasets without overfitting. Once trained, the network can rapidly predict chemical properties directly from structure, as well as generate candidate structures with desired chemical properties. Additionally, the ability to generate novel molecules along manifolds, defined by chemical property analogues, positions DarkChem as highly useful in a number of application areas, including metabolomics and small molecule identification, drug discovery and design, chemical forensics, and beyond.

Read more
Biomolecules

Deep transfer learning in the assessment of the quality of protein models

MOTIVATION: Proteins fold into complex structures that are crucial for their biological functions. Experimental determination of protein structures is costly and therefore limited to a small fraction of all known proteins. Hence, different computational structure prediction methods are necessary for the modelling of the vast majority of all proteins. In most structure prediction pipelines, the last step is to select the best available model and to estimate its accuracy. This model quality estimation problem has been growing in importance during the last decade, and progress is believed to be important for large scale modelling of proteins. The current generation of model quality estimation programs performs well at separating incorrect and good models, but fails to consistently identify the best possible model. State-of-the-art model quality assessment methods use a combination of features that describe a model and the agreement of the model with features predicted from the protein sequence. RESULTS: We first introduce a deep neural network architecture to predict model quality using significantly fewer input features than state-of-the-art methods. Thereafter, we propose a methodology to train the deep network that leverages the comparative structure of the problem. We also show the possibility of applying transfer learning on databases of known protein structures. We demonstrate its viability by reaching state-of-the-art performance using only a reduced set of input features and a coarse description of the models. AVAILABILITY: The code will be freely available for download at this http URL.

Read more

Ready to get started?

Join us today