Featured Researches

Biomolecules

On the Natural Structure of Amino Acid Patterns in Families of Protein Sequences

All known terrestrial proteins are coded as continuous strings of ~20 amino acids. The patterns formed by the repetitions of elements in groups of finite sequences describes the natural architectures of protein families. We present a method to search for patterns and groupings of patterns in protein sequences using a mathematically precise definition for 'repetition', an efficient algorithmic implementation and a robust scoring system with no adjustable parameters. We show that the sequence patterns can be well-separated into disjoint classes according to their recurrence in nested structures. The statistics of pattern occurrences indicate that short repetitions are enough to account for the differences between natural families and randomized groups by more than 10 standard deviations, while patterns shorter than 5 residues are effectively random. A small subset of patterns is sufficient to account for a robust ''familiarity'' definition of arbitrary sets of sequences.

Read more
Biomolecules

On the behavior of random RNA secondary structures near the glass transition

RNA forms elaborate secondary structures through intramolecular base pairing. These structures perform critical biological functions within each cell. Due to the availability of a polynomial algorithm to calculate the partition function over these structures, they are also a suitable system for the statistical physics of disordered systems. In this model, below the denaturation temperature, random RNA secondary structures exist in one of two phases: a strongly disordered, low-temperature glass phase, and a weakly disordered, high-temperature molten phase. The probability of two bases to pair decays with their distance with an exponent 3/2 in the molten phase, and about 4/3 in the glass phase. Inspired by previous results from a renormalized field theory of the glass transition separating the two phases, we numerically study this transition. We introduce distinct order parameters for each phase, that both vanish at the critical point. We finally explore the driving mechanism behind this transition.

Read more
Biomolecules

On the propensity of Asn-Gly-containing heptapeptides to form β -turn structures : comparison between ab initio quantum mechanical calculations and Molecular Dynamics simulations

Both molecular mechanical and quantum mechanical calculations play an important role in describing the behavior and structure of molecules. In this work, we compare for the same peptide systems the results obtained from folding molecular dynamics simulations with previously reported results from quantum mechanical calculations. More specifically, three molecular dynamics simulations of 5 μ s each in explicit water solvent were carried out for three Asn-Gly-containing heptapeptides, in order to study their folding and dynamics. Previous data, based on quantum mechanical calculations and the DFT methods have shown that these peptides adopt β -turn structures in aqueous solution, with type I' β -turn being the most preferred motif. The results from our analyses indicate that for the given system the two methods diverge in their predictions. The possibility of a force field-dependent deficiency is examined as a possible source of the observed discrepancy.

Read more
Biomolecules

On the theory of excitonic delocalization for robust vibronic dynamics in LH2

Nonlinear spectroscopy has revealed long-lasting oscillations in the optical response of a variety of photosynthetic complexes. Different theoretical models which involve the coherent coupling of electronic (excitonic) or electronic-vibrational (vibronic) degrees of freedom have been put forward to explain these observations. The ensuing debate concerning the relevance of either one or the other mechanism may have obscured their potential synergy. To illustrate this synergy, we quantify how the excitonic delocalization in the LH2 unit of Rhodopseudomonas Acidophila purple bacterium, leads to correlations of excitonic energy fluctuations, relevant coherent vibronic coupling and, importantly, a decrease in the excitonic dephasing rates. Combining these effects, we identify a feasible origin for the long-lasting oscillations observed in fluorescent traces from time-delayed two-pulse single molecule experiments performed on this photosynthetic complex.

Read more
Biomolecules

On the vibrational free energy of hydrated proteins

When the hydration shell of a protein is filled with at least 0.6 gram of water per gram of protein, a significant anti-correlation between the vibrational free energy and the potential energy of energy-minimized conformers is observed. This means that low potential energy, well-hydrated, protein conformers tend to be more rigid than high-energy ones. On the other hand, in the case of CASP target 624, when its hydration shell is filled, a significant average energy gap is observed between the crystal structure and the best conformers proposed during the prediction experiment, strongly suggesting that including explicit water molecules may help identifying unlikely conformers among good-looking ones.

Read more
Biomolecules

On-the-fly Prediction of Protein Hydration Densities and Free Energies using Deep Learning

The calculation of thermodynamic properties of biochemical systems typically requires the use of resource-intensive molecular simulation methods. One example thereof is the thermodynamic profiling of hydration sites, i.e. high-probability locations for water molecules on the protein surface, which play an essential role in protein-ligand associations and must therefore be incorporated in the prediction of binding poses and affinities. To replace time-consuming simulations in hydration site predictions, we developed two different types of deep neural-network models aiming to predict hydration site data. In the first approach, meshed 3D images are generated representing the interactions between certain molecular probes placed on regular 3D grids, encompassing the binding pocket, with the static protein. These molecular interaction fields are mapped to the corresponding 3D image of hydration occupancy using a neural network based on an U-Net architecture. In a second approach, hydration occupancy and thermodynamics were predicted point-wise using a neural network based on fully-connected layers. In addition to direct protein interaction fields, the environment of each grid point was represented using moments of a spherical harmonics expansion of the interaction properties of nearby grid points. Application to structure-activity relationship analysis and protein-ligand pose scoring demonstrates the utility of the predicted hydration information.

Read more
Biomolecules

Online interactive fitting and simulation of protein circular dichroism spectra for use in education and for preliminary spectral analysis

Far-UV circular dichroism (CD) spectroscopy provides a rapid, sensitive, nondestructive tool to analyze protein conformation by monitoring secondary structure composition. Originally intended for educational purposes, a spreadsheet-based program that implements a rudimentary routine for fitting and simulating far-UV protein CD spectra became quite used in research papers too, as it allowed very quick deconvolution of spectra into secondary structure compositions and easy simulation of spectra expected for defined secondary structure contents. To make such software more readily available, I present here an online version that runs directly on web browsers allowing even faster analyses on any modern device and without the need of any spreadsheet or third programs. The new version further extends the original capabilities to fit and simulate alpha, beta and random coil contents now including also beta turns; it allows to quickly select the effective spectral window used for fitting and enables interactive exploration of the effects of changes in secondary structure composition on the resulting spectra. The web app allows ubiquitous implementation in biophysics courses for example right on student smartphones, and seamless, rapid tests in research settings before moving to more advanced analysis programs (a few proposed here too). The web app is freely available without registration at this http URL

Read more
Biomolecules

Overcharging of zinc ion in the structure of zinc finger protein is needed for DNA binding stability

The zinc finger structure where a Zn2+ ion binds to 4 cysteine or histidine amino acids in a tetrahedral structure is very common motif of nucleic acid binding proteins. The corresponding interaction model is present in 3% of the genes of human genome. As a result, zinc finger has been shown to be extremely useful in various therapeutic and research capacities, as well as in biotechnology. In stable configuration, the cysteine amino acids are deprotonated and become negatively charged. This means the Zn2+ ion is overscreened by 4 cysteine charges (overcharged). It is question of whether this overcharged configuration is also stable when such negatively charged zinc finger binds to negatively charged DNA molecule. Using all atom molecular dynamics simulation up to microsecond range of an androgen receptor protein dimer, we investigate how the deprotonated state of cysteine influences its structure, dynamics, and function in binding o DNA molecules. Our results show that the deprotonated state of cysteine residues are essential for mechanical stabilization of the functional, folded conformation. Not only this state stabilizes the protein structure, it also stabilizes the protein-DNA binding complex. The differences in structural and energetic properties of the two (sequence-identical) monomers are also investigated showing the strong influence of DNA on the structure of zinc fingers upon complexation. Our result has potential impact on better molecular understanding of one of the most common classes of zinc fingers

Read more
Biomolecules

PANDA: Predicting the change in proteins binding affinity upon mutations using sequence information

Accurately determining a change in protein binding affinity upon mutations is important for the discovery and design of novel therapeutics and to assist mutagenesis studies. Determination of change in binding affinity upon mutations requires sophisticated, expensive, and time-consuming wet-lab experiments that can be aided with computational methods. Most of the computational prediction techniques require protein structures that limit their applicability to protein complexes with known structures. In this work, we explore the sequence-based prediction of change in protein binding affinity upon mutation. We have used protein sequence information instead of protein structures along with machine learning techniques to accurately predict the change in protein binding affinity upon mutation. Our proposed sequence-based novel change in protein binding affinity predictor called PANDA gives better accuracy than existing methods over the same validation set as well as on an external independent test dataset. On an external test dataset, our proposed method gives a maximum Pearson correlation coefficient of 0.52 in comparison to the state-of-the-art existing protein structure-based method called MutaBind which gives a maximum Pearson correlation coefficient of 0.59. Our proposed protein sequence-based method, to predict a change in binding affinity upon mutations, has wide applicability and comparable performance in comparison to existing protein structure-based methods. A cloud-based webserver implementation of PANDA and its python code is available at this https URL and this https URL.

Read more
Biomolecules

PARCE: Protocol for Amino acid Refinement through Computational Evolution

The in silico design of peptides and proteins as binders is useful for diagnosis and therapeutics due to their low adverse effects and major specificity. To select the most promising candidates, a key matter is to understand their interactions with protein targets. In this work, we present PARCE, an open source Protocol for Amino acid Refinement through Computational Evolution that implements an advanced and promising method for the design of peptides and proteins. The protocol performs a random mutation in the binder sequence, then samples the bound conformations using molecular dynamics simulations, and evaluates the protein-protein interactions from multiple scoring. Finally, it accepts or rejects the mutation by applying a consensus criterion based on binding scores. The procedure is iterated with the aim to explore efficiently novel sequences with potential better affinities toward their targets. We also provide a tutorial for running and reproducing the methodology.

Read more

Ready to get started?

Join us today