Featured Researches

Biomolecules

Assessing the impacts of mutations to the structure of COVID-19 spike protein via sequential Monte Carlo

Proteins play a key role in facilitating the infectiousness of the 2019 novel coronavirus. A specific spike protein enables this virus to bind to human cells, and a thorough understanding of its 3-dimensional structure is therefore critical for developing effective therapeutic interventions. However, its structure may continue to evolve over time as a result of mutations. In this paper, we use a data science perspective to study the potential structural impacts due to ongoing mutations in its amino acid sequence. To do so, we identify a key segment of the protein and apply a sequential Monte Carlo sampling method to detect possible changes to the space of low-energy conformations for different amino acid sequences. Such computational approaches can further our understanding of this protein structure and complement laboratory efforts.

Read more
Biomolecules

Assessment of protein assembly prediction in CASP13

We present the assembly category assessment in the 13th edition of the CASP community-wide experiment. For the second time, protein assemblies constitute an independent assessment category. Compared to the last edition we see a clear uptake in participation, more oligomeric targets released, and consistent, albeit modest, improvement of the predictions quality. Looking at the tertiary structure predictions we observe that ignoring the oligomeric state of the targets hinders modelling success. We also note that some contact prediction groups successfully predicted homomeric interfacial contacts, though it appears that these predictions were not used for assembly modelling. Homology modelling with sizeable human intervention appears to form the basis of the assembly prediction techniques in this round of CASP. Future developments should see more integrated approaches to modelling where multiple subunits are a natural part of the modelling process, which would benefit the structure prediction field as a whole.

Read more
Biomolecules

Atom-specific persistent homology and its application to protein flexibility analysis

Recently, persistent homology has had tremendous success in biomolecular data analysis. It works by examining the topological relationship or connectivity of a group of atoms in a molecule at a variety of scales, then rendering a family of topological representations of the molecule. However, persistent homology is rarely {employed} for the analysis of atomic properties, such as biomolecular flexibility analysis or B factor prediction. This work introduces atom-specific persistent homology to provide a local atomic level representation of a molecule via a global topological tool. This is achieved through the construction of a pair of conjugated sets of atoms and corresponding conjugated simplicial complexes, as well as conjugated topological spaces. The difference between the topological invariants of the pair of conjugated sets is measured by Bottleneck and Wasserstein metrics and leads to an atom-specific topological representation of individual atomic properties in a molecule. Atom-specific topological features are integrated with various machine learning algorithms, including gradient boosting trees and convolutional neural network for protein thermal fluctuation analysis and B factor prediction. Extensive numerical results indicate the proposed method provides a powerful topological tool for analyzing and predicting localized information.

Read more
Biomolecules

Attacking COVID-19 Progression using Multi-Drug Therapy for Synergetic Target Engagement

COVID-19 is a devastating respiratory and inflammatory illness caused by a new coronavirus that is rapidly spreading throughout the human population. Over the past 6 months, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus responsible for COVID-19, has already infected over 11.6 million (25% located in United States) and killed more than 540K people around the world. As we face one of the most challenging times in our recent history, there is an urgent need to identify drug candidates that can attack SARS-CoV-2 on multiple fronts. We have therefore initiated a computational dynamics drug pipeline using molecular modeling, structure simulation, docking and machine learning models to predict the inhibitory activity of several million compounds against two essential SARS-CoV-2 viral proteins and their host protein interactors; S/Ace2, Tmprss2, Cathepsins L and K, and Mpro to prevent binding, membrane fusion and replication of the virus, respectively. All together we generated an ensemble of structural conformations that increase high quality docking outcomes to screen over >6 million compounds including all FDA-approved drugs, drugs under clinical trial (>3000) and an additional >30 million selected chemotypes from fragment libraries. Our results yielded an initial set of 350 high value compounds from both new and FDA-approved compounds that can now be tested experimentally in appropriate biological model systems. We anticipate that our results will initiate screening campaigns and accelerate the discovery of COVID-19 treatments.

Read more
Biomolecules

Attribution Methods Reveal Flaws in Fingerprint-Based Virtual Screening

Fingerprint-based models for protein-ligand binding have demonstrated outstanding success on benchmark datasets; however, these models may not learn the correct binding rules. To assess this concern, we use in silico datasets with known binding rules to develop a general framework for evaluating model attribution. This framework identifies fragments that a model considers necessary to achieve a particular score, sidestepping the need for a model to be differentiable. Our results confirm that high-performing models may not learn the correct binding rule, and suggest concrete steps that can remedy this situation. We show that adding fragment-matched inactive molecules (decoys) to the data reduces attribution false negatives, while attribution false positives largely arise from the background correlation structure of molecular data. Normalizing for these background correlations helps to reveal the true binding logic. Our work highlights the danger of trusting attributions from high-performing models and suggests that a closer examination of fingerprint correlation structure and better decoy selection may help reduce misattributions.

Read more
Biomolecules

Automated Assignment of Backbone Resonances Using Residual Dipolar Couplings Acquired from a Protein with Known Structure

Resonance assignment is a critical first step in the investigation of protein structures using NMR spectroscopy. The development of assignment methods that require less experimental data is possible with prior knowledge of the macromolecular structure. Automated methods of performing the task of resonance assignment can significantly reduce the financial cost and time requirement for protein structure determination. Such methods can also be beneficial in validating a protein's solution state structure. Here we present a new approach to the assignment problem. Our approach uses only RDC data to assign backbone resonances. It provides simultaneous order tensor estimation and assignment. Our approach compares independent order tensor estimates to determine when the correct order tensor has been found. We demonstrate the algorithm's viability using simulated data from the protein domain 1A1Z.

Read more
Biomolecules

Automated discovery of GPCR bioactive ligands

While G-protein coupled receptors (GPCRs) constitute the largest class of membrane proteins, structures and endogenous ligands of a large portion of GPCRs remain unknown. Due to the involvement of GPCRs in various signaling pathways and physiological roles, the identification of endogenous ligands as well as designing novel drugs is of high interest to the research and medical communities. Along with highlighting the recent advances in structure-based ligand discovery, including docking and molecular dynamics, this article focuses on the latest advances for automating the discovery of bioactive ligands using machine learning. Machine learning is centered around the development and applications of algorithms that can learn from data automatically. Such an approach offers immense opportunities for bioactivity prediction as well as quantitative structure-activity relationship studies. This review describes the most recent and successful applications of machine learning for bioactive ligand discovery, concluding with an outlook on deep learning methods that are capable of automatically extracting salient information from structural data as a promising future direction for rapid and efficient bioactive ligand discovery.

Read more
Biomolecules

Automatic Feature Selection in Markov State Models Using Genetic Algorithm

Markov State Models (MSMs) are a powerful framework to reproduce the long-time conformational dynamics of biomolecules using a set of short Molecular Dynamics (MD) simulations. However, precise kinetics predictions of MSMs heavily rely on the features selected to describe the system. Despite the importance of feature selection for large system, determining an optimal set of features remains a difficult unsolved problem. Here, we introduce an automatic approach to optimize feature selection based on genetic algorithms (GA), which adaptively evolves the most fitted solution according to natural selection laws. The power of the GA-based method is illustrated on long atomistic folding simulations of four proteins, varying in length from 28 to 80 residues. Due to the diversity of tested proteins, we expect that our method will be extensible to other proteins and drive MSM building to a more objective protocol.

Read more
Biomolecules

Automatic microtubule tracking in fluorescence images of cells doped with increasing concentrations of taxol and nocodazole

The purpose of this paper is to provide an algorithm for detecting and tracking astral MTs in a fully automated way and supply a description of their dynamic behaviour. For the algorithm testing, a dataset of stacks (i.e. time-lapse image sequences), acquired with a confocal microscope, has been employed. Cells were treated with two different drugs, nocodazole and taxol, in order to explore their effect on microtubule dynamic instability.

Read more
Biomolecules

BERT Learns (and Teaches) Chemistry

Modern computational organic chemistry is becoming increasingly data-driven. There remain a large number of important unsolved problems in this area such as product prediction given reactants, drug discovery, and metric-optimized molecule synthesis, but efforts to solve these problems using machine learning have also increased in recent years. In this work, we propose the use of attention to study functional groups and other property-impacting molecular substructures from a data-driven perspective, using a transformer-based model (BERT) on datasets of string representations of molecules and analyzing the behavior of its attention heads. We then apply the representations of functional groups and atoms learned by the model to tackle problems of toxicity, solubility, drug-likeness, and synthesis accessibility on smaller datasets using the learned representations as features for graph convolution and attention models on the graph structure of molecules, as well as fine-tuning of BERT. Finally, we propose the use of attention visualization as a helpful tool for chemistry practitioners and students to quickly identify important substructures in various chemical properties.

Read more

Ready to get started?

Join us today