Featured Researches

Cell Behavior

A Bayesian statistical analysis of stochastic phenotypic plasticity model of cancer cells

The phenotypic plasticity of cancer cells has received special attention in recent years. Even though related models have been widely studied in terms of mathematical properties, a thorough statistical analysis on parameter estimation and model selection is still very lacking. In this study, we present a Bayesian approach on the relative frequencies of cancer stem cells (CSCs). Both Gibbs sampling and Metropolis-Hastings (MH) algorithm are used to perform point and interval estimations of cell-state transition rates between CSCs and non-CSCs. Extensive simulations demonstrate the validity of our model and algorithm. By applying this method to a published data on SW620 colon cancer cell line, the model selection favors the phenotypic plasticity model, relative to conventional hierarchical model of cancer cells. Moreover, it is found that the initial state of CSCs after cell sorting significantly influences the occurrence of phenotypic plasticity.

Read more
Cell Behavior

A Bayesian traction force microscopy method with automated denoising in a user-friendly software package

Adherent biological cells generate traction forces on a substrate that play a central role for migration, mechanosensing, differentiation, and collective behavior. The established method for quantifying this cell-substrate interaction is traction force microscopy (TFM). In spite of recent advancements, inference of the traction forces from measurements remains very sensitive to noise. However, suppression of the noise reduces the measurement accuracy and the spatial resolution, which makes it crucial to select an optimal level of noise reduction. Here, we present a fully automated method for noise reduction and robust, standardized traction-force reconstruction. The method, termed Bayesian Fourier transform traction cytometry, combines the robustness of Bayesian L2 regularization with the computation speed of Fourier transform traction cytometry. We validate the performance of the method with synthetic and real data. The method is made freely available as a software package with a graphical user-interface for intuitive usage.

Read more
Cell Behavior

A Comparison and Catalog of Intrinsic Tumor Growth Models

Determining the mathematical dynamics and associated parameter values that should be used to accurately reflect tumor growth continues to be of interest to mathematical modelers, experimentalists and practitioners. However, while there are several competing canonical tumor growth models that are often implemented, how to determine which of the models should be used for which tumor types remains an open question. In this work, we determine the best fit growth dynamics and associated parameter ranges for ten different tumor types by fitting growth functions to at least five sets of published experimental growth data per type of tumor. These time-series tumor growth data are used to determine which of the five most common tumor growth models (exponential, power law, logistic, Gompertz, or von Bertalanffy) provides the best fit for each type of tumor.

Read more
Cell Behavior

A Computational Model Incorporating Neural Stem Cell Dynamics Reproduces Glioma Incidence across the Lifespan in the Human Population

Glioma is the most common form of primary brain tumor. Demographically, the risk of occurrence increases until old age. Here we present a novel computational model to reproduce the probability of glioma incidence across the lifespan. Previous mathematical models explaining glioma incidence are framed in a rather abstract way, and do not directly relate to empirical findings. To decrease this gap between theory and experimental observations, we incorporate recent data on cellular and molecular factors underlying gliomagenesis. Since evidence implicates the adult neural stem cell as the likely cell-of-origin of glioma, we have incorporated empirically-determined estimates of neural stem cell number, cell division rate, mutation rate and oncogenic potential into our model. We demonstrate that our model yields results which match actual demographic data in the human population. In particular, this model accounts for the observed peak incidence of glioma at approximately 80 years of age, without the need to assert differential susceptibility throughout the population. Overall, our model supports the hypothesis that glioma is caused by randomly-occurring oncogenic mutations within the neural stem cell population. Based on this model, we assess the influence of the (experimentally indicated) decrease in the number of neural stem cells and increase of cell division rate during aging. Our model provides multiple testable predictions, and suggests that different temporal sequences of oncogenic mutations can lead to tumorigenesis. Finally, we conclude that four or five oncogenic mutations are sufficient for the formation of glioma.

Read more
Cell Behavior

A Critical-like Collective State Leads to Long-range Cell Communication in Dictyostelium discoideum Aggregation

The transition from single-cell to multicellular behavior is important in early development but rarely studied. The starvation-induced aggregation of the social amoeba Dictyostelium discoideum into a multicellular slug is known to result from single-cell chemotaxis towards emitted pulses of cyclic adenosine monophosphate (cAMP). However, how exactly do transient short-range chemical gradients lead to coherent collective movement at a macroscopic scale? Here, we use a multiscale model verified by quantitative microscopy to describe wide-ranging behaviors from chemotaxis and excitability of individual cells to aggregation of thousands of cells. To better understand the mechanism of long-range cell-cell communication and hence aggregation, we analyze cell-cell correlations, showing evidence for self-organization at the onset of aggregation (as opposed to following a leader cell). Surprisingly, cell collectives, despite their finite size, show features of criticality known from phase transitions in physical systems. Application of external cAMP perturbations in our simulations near the sensitive critical point allows steering cells into early aggregation and towards certain locations but not once an aggregation center has been chosen.

Read more
Cell Behavior

A Dynamically Diluted Alignment Model Reveals the Impact of Cell Turnover on the Plasticity of Tissue Polarity Patterns

The polarisation of cells and tissues is fundamental for tissue morphogenesis during biological development and regeneration. A deeper understanding of biological polarity pattern formation can be gained from the consideration of pattern reorganisation in response to an opposing instructive cue, which we here consider by example of experimentally inducible body axis inversions in planarian flatworms. Our dynamically diluted alignment model represents three processes: entrainment of cell polarity by a global signal, local cell-cell coupling aligning polarity among neighbours and cell turnover inserting initially unpolarised cells. We show that a persistent global orienting signal determines the final mean polarity orientation in this stochastic model. Combining numerical and analytical approaches, we find that neighbour coupling retards polarity pattern reorganisation, whereas cell turnover accelerates it. We derive a formula for an effective neighbour coupling strength integrating both effects and find that the time of polarity reorganisation depends linearly on this effective parameter and no abrupt transitions are observed. This allows to determine neighbour coupling strengths from experimental observations. Our model is related to a dynamic 8 -Potts model with annealed site-dilution and makes testable predictions regarding the polarisation of dynamic systems, such as the planarian epithelium.

Read more
Cell Behavior

A Formalism for Modelling Traction forces and Cell Shape Evolution during Cell Migration in Various Biomedical Processes

The phenomenological model for cell shape deformation and cell migration (Chen this http URL. 2018; Vermolen and Gefen 2012) is extended with the incorporation of cell traction forces and the evolution of cell equilibrium shapes as a result of cell differentiation. Plastic deformations of the extracellular matrix are modelled using morphoelasticity theory. The resulting partial differential differential equations are solved by the use of the finite element method. The paper treats various biological scenarios that entail cell migration and cell shape evolution. The experimental observations in Mak this http URL. (2013), where transmigration of cancer cells through narrow apertures is studied, are reproduced using a Monte Carlo framework.

Read more
Cell Behavior

A General Model of Structured Cell Kinetics

We present a modelling framework for the dynamics of cells structured by the concentration of a micromolecule they contain. We derive general equations for the evolution of the cell population and of the extra-cellular concentration of the molecule and apply this approach to models of silicosis and quorum sensing in Gram-negative bacteria

Read more
Cell Behavior

A Hybrid Multiscale Model for Cancer Invasion of the Extracellular Matrix

The ability to locally degrade the extracellular matrix (ECM) and interact with the tumour microenvironment is a key process distinguishing cancer from normal cells, and is a critical step in the metastatic spread of the tumour. The invasion of the surrounding tissue involves the coordinated action between cancer cells, the ECM, the matrix degrading enzymes, and the epithelial-to-mesenchymal transition (EMT). This is a regulatory process through which epithelial cells (ECs) acquire mesenchymal characteristics and transform to mesenchymal-like cells (MCs). In this paper, we present a new mathematical model which describes the transition from a collective invasion strategy for the ECs to an individual invasion strategy for the MCs. We achieve this by formulating a coupled hybrid system consisting of partial and stochastic differential equations that describe the evolution of the ECs and the MCs, respectively. This approach allows one to reproduce in a very natural way fundamental qualitative features of the current biomedical understanding of cancer invasion that are not easily captured by classical modelling approaches, for example, the invasion of the ECM by self-generated gradients and the appearance of EC invasion islands outside of the main body of the tumour.

Read more
Cell Behavior

A Macroscopic Mathematical Model For Cell Migration Assays Using A Real-Time Cell Analysis

Experiments of cell migration and chemotaxis assays have been classically performed in the so-called Boyden Chambers. A recent technology, xCELLigence Real Time Cell Analysis, is now allowing to monitor the cell migration in real time. This technology measures impedance changes caused by the gradual increase of electrode surface occupation by cells during the course of time and provide a Cell Index which is proportional to cellular morphology, spreading, ruffling and adhesion quality as well as cell number. In this paper we propose a macroscopic mathematical model, based on \emph{advection-reaction-diffusion} partial differential equations, describing the cell migration assay using the real-time technology. We carried out numerical simulations to compare simulated model dynamics with data of observed biological experiments on three different cell lines and in two experimental settings: absence of chemotactic signals (basal migration) and presence of a chemoattractant. Overall we conclude that our minimal mathematical model is able to describe the phenomenon in the real time scale and numerical results show a good agreement with the experimental evidences.

Read more

Ready to get started?

Join us today