Featured Researches

Molecular Networks

Computation capacities of a broad class of signaling networks are higher than their communication capacities

Due to structural and functional abnormalities or genetic variations and mutations, there may be dysfunctional molecules within an intracellular signaling network that do not allow the network to correctly regulate its output molecules, such as transcription factors. This disruption in signaling interrupts normal cellular functions and may eventually develop some pathological conditions. In this paper, computation capacity of signaling networks is introduced as a fundamental limit on signaling capability and performance of such networks. The computation capacity measures the maximum number of computable inputs, that is, the maximum number of input values for which the correct functional output values can be recovered from the erroneous network outputs, when the network contains some dysfunctional molecules. This contrasts with the conventional communication capacity that measures instead the maximum number of input values that can be correctly distinguished based on the erroneous network outputs. The computation capacity is higher than the communication capacity, if the network response function is not a one-to-one function of the input signals. By explicitly incorporating the effect of signaling errors that result in the network dysfunction, the computation capacity provides more information about the network and its malfunction. Two examples of signaling networks are studied here, one regulating caspase3 and another regulating NFkB, for which computation and communication capacities are analyzed. Higher computation capacities are observed for both networks. One biological implication of this finding is that signaling networks may have more capacity than that specified by the conventional communication capacity metric. The effect of feedback is also studied. In summary, this paper reports findings on a new fundamental feature of the signaling capability of cell signaling networks.

Read more
Molecular Networks

Computation of single-cell metabolite distributions using mixture models

Metabolic heterogeneity is widely recognised as the next challenge in our understanding of non-genetic variation. A growing body of evidence suggests that metabolic heterogeneity may result from the inherent stochasticity of intracellular events. However, metabolism has been traditionally viewed as a purely deterministic process, on the basis that highly abundant metabolites tend to filter out stochastic phenomena. Here we bridge this gap with a general method for prediction of metabolite distributions across single cells. By exploiting the separation of time scales between enzyme expression and enzyme kinetics, our method produces estimates for metabolite distributions without the lengthy stochastic simulations that would be typically required for large metabolic models. The metabolite distributions take the form of Gaussian mixture models that are directly computable from single-cell expression data and standard deterministic models for metabolic pathways. The proposed mixture models provide a systematic method to predict the impact of biochemical parameters on metabolite distributions. Our method lays the groundwork for identifying the molecular processes that shape metabolic heterogeneity and its functional implications in disease.

Read more
Molecular Networks

Computational mechanisms in genetic regulation by RNA

The evolution of the genome has led to very sophisticated and complex regulation. Because of the abundance of non-coding RNA (ncRNA) in the cell, different species will promiscuously associate with each other, suggesting collective dynamics similar to artificial neural networks. Here we present a simple mechanism allowing ncRNA to perform computations equivalent to neural network algorithms such as Boltzmann machines and the Hopfield model. The quantities analogous to the neural couplings are the equilibrium constants between different RNA species. The relatively rapid equilibration of RNA binding and unbinding is regulated by a slower process that degrades and creates new RNA. The model requires that the creation rate for each species be an increasing function of the ratio of total to unbound RNA. Similar mechanisms have already been found to exist experimentally for ncRNA regulation. With the overall concentration of RNA regulated, equilibrium constants can be chosen to store many different patterns, or many different input-output relations. The network is also quite insensitive to random mutations in equilibrium constants. Therefore one expects that this kind of mechanism will have a much higher mutation rate than ones typically regarded as being under evolutionary constraint.

Read more
Molecular Networks

Computational modeling approaches in gonadotropin signaling

Follicle-stimulating hormone (FSH) and luteinizing hormone (LH) play essential roles in animal reproduction. They exert their function through binding to their cognate receptors, which belong to the large family of G protein-coupled receptors (GPCRs). This recognition at the plasma membrane triggers a plethora of cellular events, whose processing and integration ultimately lead to an adapted biological response. Understanding the nature and the kinetics of these events is essential for innovative approaches in drug discovery. The study and manipulation of such complex systems requires the use of computational modeling approaches combined with robust in vitro functional assays for calibration and validation. Modeling brings a detailed understanding of the system and can also be used to understand why existing drugs do not work as well as expected, and how to design more efficient ones.

Read more
Molecular Networks

Computational modeling of Human-nCoV protein-protein interaction network

COVID-19 has created a global pandemic with high morbidity and mortality in 2020. Novel coronavirus (nCoV), also known as Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV2), is responsible for this deadly disease. International Committee on Taxonomy of Viruses (ICTV) has declared that nCoV is highly genetically similar to SARS-CoV epidemic in 2003 (89% similarity). Limited number of clinically validated Human-nCoV protein interaction data is available in the literature. With this hypothesis, the present work focuses on developing a computational model for nCoV-Human protein interaction network, using the experimentally validated SARS-CoV-Human protein interactions. Initially, level-1 and level-2 human spreader proteins are identified in SARS-CoV-Human interaction network, using Susceptible-Infected-Susceptible (SIS) model. These proteins are considered as potential human targets for nCoV bait proteins. A gene-ontology based fuzzy affinity function has been used to construct the nCoV-Human protein interaction network at 99.98% specificity threshold. This also identifies the level-1 human spreaders for COVID-19 in human protein-interaction network. Level-2 human spreaders are subsequently identified using the SIS model. The derived host-pathogen interaction network is finally validated using 7 potential FDA listed drugs for COVID-19 with significant overlap between the known drug target proteins and the identified spreader proteins.

Read more
Molecular Networks

Computational prediction and analysis of protein-protein interaction networks

Biological networks provide insight into the complex organization of biological processes in a cell at the system level. They are an effective tool for understanding the comprehensive map of functional interactions, finding the functional modules and pathways. Reconstruction and comparative analysis of these networks provide useful information to identify functional modules, prioritization of disease causing genes and also identification of drug targets. The talk will consist of two parts. I will discuss several methods for protein-protein interaction network alignment and investigate their preferences to other existing methods. Further, I briefly talk about reconstruction of protein-protein interaction networks by using deep learning.

Read more
Molecular Networks

Computing Biomolecular System Steady-states

A new approach to computing the equilibria and steady-states of biomolecular systems modelled by bond graphs is presented. The approach is illustrated using a model of a biomolecular cycle representing a membrane transporter and a model of the mitochondrial electron transport chain.

Read more
Molecular Networks

Conformational selection or induced fit? New insights from old principles

A long standing debate in biochemistry is to determine whether the conformational changes observed during biomolecular interactions proceed through conformational selection (of preexisting isoforms) or induced fit (ligand-induced 3D reshaping). The latter mechanism had been invoked in certain circumstances, for example to explain the non-Michaelian activity of monomeric enzymes like glucokinase. But the relative importance of induced fit has been recently depreciated in favor of conformational selection, assumed to be always sufficient, predominant in general and in particular for glucokinase. The relative contributions of conformational selection and induced fit are reconsidered here in and out of equilibrium, in the light of earlier concepts such as the cyclic equilibrium rule and the turning wheel of Wyman, using single molecule state probability, one way fluxes and net fluxes. The conditions for a switch from conformational selection to induced fit at a given ligand concentration are explicitly determined. Out of equilibrium, the inspection of the enzyme states circuit shows that conformational selection alone would give a Michaelian reaction rate but not the established nonlinear behaviour of glucokinase. Moreover, when induced fit and conformational selection coexist and allow kinetic cooperativity, the net flux emerging in the linkage cycle necessarily corresponds to the induced fit path.

Read more
Molecular Networks

Considerations of automated machine learning in clinical metabolic profiling: Altered homocysteine plasma concentration associated with metformin exposure

With the maturation of metabolomics science and proliferation of biobanks, clinical metabolic profiling is an increasingly opportunistic frontier for advancing translational clinical research. Automated Machine Learning (AutoML) approaches provide exciting opportunity to guide feature selection in agnostic metabolic profiling endeavors, where potentially thousands of independent data points must be evaluated. In previous research, AutoML using high-dimensional data of varying types has been demonstrably robust, outperforming traditional approaches. However, considerations for application in clinical metabolic profiling remain to be evaluated. Particularly, regarding the robustness of AutoML to identify and adjust for common clinical confounders. In this study, we present a focused case study regarding AutoML considerations for using the Tree-Based Optimization Tool (TPOT) in metabolic profiling of exposure to metformin in a biobank cohort. First, we propose a tandem rank-accuracy measure to guide agnostic feature selection and corresponding threshold determination in clinical metabolic profiling endeavors. Second, while AutoML, using default parameters, demonstrated potential to lack sensitivity to low-effect confounding clinical covariates, we demonstrated residual training and adjustment of metabolite features as an easily applicable approach to ensure AutoML adjustment for potential confounding characteristics. Finally, we present increased homocysteine with long-term exposure to metformin as a potentially novel, non-replicated metabolite association suggested by TPOT; an association not identified in parallel clinical metabolic profiling endeavors. While considerations are recommended, including adjustment approaches for clinical confounders, AutoML presents an exciting tool to enhance clinical metabolic profiling and advance translational research endeavors.

Read more
Molecular Networks

Constraint-based inverse modeling of metabolic networks: a proof of concept

We consider the problem of inferring the probability distribution of flux configurations in metabolic network models from empirical flux data. For the simple case in which experimental averages are to be retrieved, data are described by a Boltzmann-like distribution ( ??e F/T ) where F is a linear combination of fluxes and the `temperature' parameter T?? allows for fluctuations. The zero-temperature limit corresponds to a Flux Balance Analysis scenario, where an objective function ( F ) is maximized. As a test, we have inverse modeled, by means of Boltzmann learning, the catabolic core of Escherichia coli in glucose-limited aerobic stationary growth conditions. Empirical means are best reproduced when F is a simple combination of biomass production and glucose uptake and the temperature is finite, implying the presence of fluctuations. The scheme presented here has the potential to deliver new quantitative insight on cellular metabolism. Our implementation is however computationally intensive, and highlights the major role that effective algorithms to sample the high-dimensional solution space of metabolic networks can play in this field.

Read more

Ready to get started?

Join us today