Featured Researches

Quantum Physics

Bosonic data hiding: power of linear vs non-linear optics

We show that the positivity of the Wigner function of Gaussian states and measurements provides an elegant way to bound the discriminating power of "linear optics", which we formalise as Gaussian measurement operations augmented by classical (feed-forward) communication (GOCC). This allows us to reproduce and generalise the result of Takeoka and Sasaki [PRA 78:022320, 2008], which tightly characterises the GOCC norm distance of coherent states, separating it from the optimal distinguishability according to Helstrom's theorem. Furthermore, invoking ideas from classical and quantum Shannon theory we show that there are states, each a probabilistic mixture of multi-mode coherent states, which are exponentially reliably discriminated in principle, but appear exponentially close judging from the output of GOCC measurements. In analogy to LOCC data hiding, which shows an irreversibility in the preparation and discrimination of states by the restricted class of local operations and classical communication (LOCC), we call the present effect GOCC data hiding. We also present general bounds in the opposite direction, guaranteeing a minimum of distinguishability under measurements with positive Wigner function, for any bounded-energy states that are Helstrom distinguishable. We conjecture that a similar bound holds for GOCC measurements.

Read more
Quantum Physics

Both qubits of the singlet state can be steered simultaneously by multiple independent observers via sequential measurement

Quantum correlation is a fundamental property which distinguishes quantum systems from classical ones, and it is also a fragile resource under projective measurement. Recently, it has been shown that a subsystem in entangled pairs can share nonlocality with multiple observers in sequence. Here we present a new steering scenario where both subsystems are accessible by multiple observers. And it is found that the two qubits in singlet state can be simultaneously steered by two sequential observers, respectively.

Read more
Quantum Physics

Bound and Subradiant Multi-Atom Excitations in an Atomic Array with Nonreciprocal Couplings

Collective decays of multiply-excited atoms become subradiant and bound in space when they are strongly coupled to the guided modes in an atom-waveguide interface. In this interface, we analyze their average density-density and modified third-order correlations via Kubo cumulant expansions, which can arise and sustain for long time. The shape-preserving dimers and trimers of atomic excitations emerge in the most subradiant coupling regime of light-induced dipole-dipole interactions. This leads to a potential application of quantum information processing and quantum storage in the encoded nonreciprocal spin diffusion, where its diffusion speed depends on the initial coherence between the excited atoms and is robust to their relative phase fluctuations. The state-dependent photon routing can be viable as well in this interface.

Read more
Quantum Physics

Bragg condition for scattering into a guided optical mode

We theoretically investigate light scattering from an array of atoms into the guided modes of a waveguide. We show that the scattering of a plane wave laser field into the waveguide modes is dramatically enhanced for angles that deviate from the geometric Bragg angle. We derive a modified Bragg condition, and show that it arises from the dispersive interactions between the guided light and the atoms. Moreover, we identify various parameter regimes in which the scattering rate features a qualitatively different dependence on the atom number, such as linear, quadratic, oscillatory or constant behavior. We show that our findings are robust against voids in the atomic array, facilitating their experimental observation and potential applications. Our work sheds new light on collective light scattering and the interplay between geometry and interaction effects, with implications reaching beyond the optical domain.

Read more
Quantum Physics

Broadband Fiber-based Entangled Photon Pair Source at Telecom O-band

In this letter, we report a polarization-entangled photon-pair source based on type-II spontaneous parametric down conversion at telecom O-band in periodically poled silica fiber (PPSF). The photon-pair source exhibits more than 130 nm (~24 THz) emission bandwidth centered at 1306.6 nm. The broad emission spectrum results in a short biphoton correlation time and we experimentally demonstrate a Hong-Ou-Mandel interference dip with a full width of 26.6 fs at half maximum. Owing to the low birefringence of the PPSF, the biphotons generated from type-II SPDC are polarization-entangled over the entire emission bandwidth, with a measured fidelity to a maximally entangled state greater than 95.4%. The biphoton source provides the broadest bandwidth entangled biphotons at O-band to our knowledge.

Read more
Quantum Physics

Cache Blocking Technique to Large Scale Quantum Computing Simulation on Supercomputers

Classical computers require large memory resources and computational power to simulate quantum circuits with a large number of qubits. Even supercomputers that can store huge amounts of data face a scalability issue in regard to parallel quantum computing simulations because of the latency of data movements between distributed memory spaces. Here, we apply a cache blocking technique by inserting swap gates in quantum circuits to decrease data movements. We implemented this technique in the open source simulation framework Qiskit Aer. We evaluated our simulator on GPU clusters and observed good scalability.

Read more
Quantum Physics

Calibration-Free Vector Magnetometry Using Nitrogen-Vacancy Center in Diamond Integrated with Optical Vortex Beam

We report a new method to determine the orientation of individual nitrogen-vacancy (NV) centers in a bulk diamond and use them to realize a calibration-free vector magnetometer with nanoscale resolution. Optical vortex beam is used for optical excitation and scanning the NV center in a [111]-oriented diamond. The scanning fluorescence patterns of NV center with different orientations are completely different. Thus, the orientation information on each NV center in the lattice can be known directly without any calibration process. Further, we use three differently oriented NV centers to form a magnetometer and reconstruct the complete vector information on the magnetic field based on the optically detected magnetic resonance(ODMR) technique. Compared with previous schemes to realize vector magnetometry using an NV center, our method is much more efficient and is easily applied in other NV-based quantum sensing applications.

Read more
Quantum Physics

Can single photon excitation of two spatially separated modes lead to a violation of Bell inequality via homodyne measurements?

We reconsider the all-optical homodyne-measurement based experimental schemes that aim to reveal Bell nonclassicality of a single photon, often termed `nonlocality'. We focus on the schemes put forward by Tan, Walls and Collett (TWC, 1991) and Hardy (1994). In the light of our previous work the Tan, Walls and Collett setup can be described by a precise local hidden variable model, hence the claimed nonclassicality of this proposal is apparent, whereas the nonclassicality proof proposed by Hardy is impeccable. In this work we resolve the following problem: which feature of the Hardy's approach is crucial for its successful confirmation of nonclassicality. The scheme of Hardy differs from the Tan, Walls and Collett setup in two aspects. (i) It introduces a superposition of a single photon excitation with vacuum as the initial state of one of the input modes of a 50-50 beamsplitter, which creates the superposition state of two separable (exit) modes under investigation. (ii) In the final measurements Hardy's proposal utilises a varying strengths of the local oscillator fields, whereas in the TWC case they are constant. In fact the local oscillators in Hardy's scheme are either on or off (the local setting is specified by the presence or absence of the local auxiliary field). We show that it is the varying strength of the local oscillators, from setting to setting, which is the crucial feature enabling violation of local realism in the Hardy setup, whereas it is not necessary to use initial superposition of a single photon excitation with vacuum as the initial state of the input mode. Neither one needs to operate in the fully on/off detection scheme. Despite the failure of the Tan, Walls and Collett scheme in proving Bell nonclassicality, we show that their scheme can serve as an entanglement indicator.

Read more
Quantum Physics

Capacity and quantum geometry of parametrized quantum circuits

To harness the potential of noisy intermediate-scale quantum devices, it is paramount to find the best type of circuits to run hybrid quantum-classical algorithms. Key candidates are parametrized quantum circuits that can be effectively implemented on current devices. Here, we evaluate the capacity and trainability of these circuits using the geometric structure of the parameter space via the effective quantum dimension, which reveals the expressive power of circuits in general as well as of particular initialization strategies. We assess the representation power of various popular circuit types and find striking differences depending on the type of entangling gates used. Particular circuits are characterized by scaling laws in their expressiveness. We identify a transition in the quantum geometry of the parameter space, which leads to a decay of the quantum natural gradient for deep circuits. For shallow circuits, the quantum natural gradient can be orders of magnitude larger in value compared to the regular gradient; however, both of them can suffer from vanishing gradients. By tuning a fixed set of circuit parameters to randomized ones, we find a region where the circuit is expressive, but does not suffer from barren plateaus, hinting at a good way to initialize circuits. Our results enhance the understanding of parametrized quantum circuits for improving variational quantum algorithms.

Read more
Quantum Physics

Catalytic Entanglement

Quantum entanglement of pure states is usually quantified via the entanglement entropy, the von Neumann entropy of the reduced state. Entanglement entropy is closely related to entanglement distillation, a process for converting quantum states into singlets, which can then be used for various quantum technological tasks. The relation between entanglement entropy and entanglement distillation has been known only for the asymptotic setting, and the meaning of entanglement entropy in the single-copy regime has so far remained open. Here we close this gap by considering entanglement catalysis. We prove that entanglement entropy completely characterizes state transformations in the presence of entangled catalysts. Our results suggest that catalysis is useful for a broad range of quantum information protocols, giving asymptotic results an operational meaning also in the single-copy setup.

Read more

Ready to get started?

Join us today