Featured Researches

Computation

Accelerated Algorithms for Convex and Non-Convex Optimization on Manifolds

We propose a general scheme for solving convex and non-convex optimization problems on manifolds. The central idea is that, by adding a multiple of the squared retraction distance to the objective function in question, we "convexify" the objective function and solve a series of convex sub-problems in the optimization procedure. One of the key challenges for optimization on manifolds is the difficulty of verifying the complexity of the objective function, e.g., whether the objective function is convex or non-convex, and the degree of non-convexity. Our proposed algorithm adapts to the level of complexity in the objective function. We show that when the objective function is convex, the algorithm provably converges to the optimum and leads to accelerated convergence. When the objective function is non-convex, the algorithm will converge to a stationary point. Our proposed method unifies insights from Nesterov's original idea for accelerating gradient descent algorithms with recent developments in optimization algorithms in Euclidean space. We demonstrate the utility of our algorithms on several manifold optimization tasks such as estimating intrinsic and extrinsic Fréchet means on spheres and low-rank matrix factorization with Grassmann manifolds applied to the Netflix rating data set.

Read more
Computation

Accelerating Metropolis-within-Gibbs sampler with localized computations of differential equations

Inverse problem is ubiquitous in science and engineering, and Bayesian methodologies are often used to infer the underlying parameters. For high dimensional temporal-spatial models, classical Markov chain Monte Carlo (MCMC) methods are often slow to converge, and it is necessary to apply Metropolis-within-Gibbs (MwG) sampling on parameter blocks. However, the computation cost of each MwG iteration is typically O( n 2 ) , where n is the model dimension. This can be too expensive in practice. This paper introduces a new reduced computation method to bring down the computation cost to O(n) , for the inverse initial value problem of a stochastic differential equation (SDE) with local interactions. The key observation is that each MwG proposal is only different from the original iterate at one parameter block, and this difference will only propagate within a local domain in the SDE computations. Therefore we can approximate the global SDE computation with a surrogate updated only within the local domain for reduced computation cost. Both theoretically and numerically, we show that the approximation errors can be controlled by the local domain size. We discuss how to implement the local computation scheme using Euler--Maruyama and 4th order Runge--Kutta methods. We numerically demonstrate the performance of the proposed method with the Lorenz 96 model and a linear stochastic flow model.

Read more
Computation

Accelerating Uncertainty Quantification of Groundwater Flow Modelling Using a Deep Neural Network Proxy

Quantifying the uncertainty in model parameters and output is a critical component in model-driven decision support systems for groundwater management. This paper presents a novel algorithmic approach which fuses Markov Chain Monte Carlo (MCMC) and Machine Learning methods to accelerate uncertainty quantification for groundwater flow models. We formulate the governing mathematical model as a Bayesian inverse problem, considering model parameters as a random process with an underlying probability distribution. MCMC allows us to sample from this distribution, but it comes with some limitations: it can be prohibitively expensive when dealing with costly likelihood functions, subsequent samples are often highly correlated, and the standard Metropolis-Hastings algorithm suffers from the curse of dimensionality. This paper designs a Metropolis-Hastings proposal which exploits a deep neural network (DNN) approximation of a groundwater flow model, to significantly accelerate MCMC sampling. We modify a delayed acceptance (DA) model hierarchy, whereby proposals are generated by running short subchains using an inexpensive DNN approximation, resulting in a decorrelation of subsequent fine model proposals. Using a simple adaptive error model, we estimate and correct the bias of the DNN approximation with respect to the posterior distribution on-the-fly. The approach is tested on two synthetic examples; a isotropic two-dimensional problem, and an anisotropic three-dimensional problem. The results show that the cost of uncertainty quantification can be reduced by up to 50% compared to single-level MCMC, depending on the precomputation cost and accuracy of the employed DNN.

Read more
Computation

Accelerating proximal Markov chain Monte Carlo by using an explicit stabilised method

We present a highly efficient proximal Markov chain Monte Carlo methodology to perform Bayesian computation in imaging problems. Similarly to previous proximal Monte Carlo approaches, the proposed method is derived from an approximation of the Langevin diffusion. However, instead of the conventional Euler-Maruyama approximation that underpins existing proximal Monte Carlo methods, here we use a state-of-the-art orthogonal Runge-Kutta-Chebyshev stochastic approximation that combines several gradient evaluations to significantly accelerate its convergence speed, similarly to accelerated gradient optimisation methods. The proposed methodology is demonstrated via a range of numerical experiments, including non-blind image deconvolution, hyperspectral unmixing, and tomographic reconstruction, with total-variation and ℓ 1 -type priors. Comparisons with Euler-type proximal Monte Carlo methods confirm that the Markov chains generated with our method exhibit significantly faster convergence speeds, achieve larger effective sample sizes, and produce lower mean square estimation errors at equal computational budget.

Read more
Computation

Accelerating sequential Monte Carlo with surrogate likelihoods

Delayed-acceptance is a technique for reducing computational effort for Bayesian models with expensive likelihoods. Using a delayed-acceptance kernel for Markov chain Monte Carlo can reduce the number of expensive likelihoods evaluations required to approximate a posterior expectation. Delayed-acceptance uses a surrogate, or approximate, likelihood to avoid evaluation of the expensive likelihood when possible. Within the sequential Monte Carlo framework, we utilise the history of the sampler to adaptively tune the surrogate likelihood to yield better approximations of the expensive likelihood, and use a surrogate first annealing schedule to further increase computational efficiency. Moreover, we propose a framework for optimising computation time whilst avoiding particle degeneracy, which encapsulates existing strategies in the literature. Overall, we develop a novel algorithm for computationally efficient SMC with expensive likelihood functions. The method is applied to static Bayesian models, which we demonstrate on toy and real examples, code for which is available at this https URL.

Read more
Computation

Adaptive Approximate Bayesian Computation Tolerance Selection

Approximate Bayesian Computation (ABC) methods are increasingly used for inference in situations in which the likelihood function is either computationally costly or intractable to evaluate. Extensions of the basic ABC rejection algorithm have improved the computational efficiency of the procedure and broadened its applicability. The ABC-Population Monte Carlo (ABC-PMC) approach of Beaumont et al. (2009) has become a popular choice for approximate sampling from the posterior. ABC-PMC is a sequential sampler with an iteratively decreasing value of the tolerance, which specifies how close the simulated data need to be to the real data for acceptance. We propose a method for adaptively selecting a sequence of tolerances that improves the computational efficiency of the algorithm over other common techniques. In addition we define a stopping rule as a by-product of the adaptation procedure, which assists in automating termination of sampling. The proposed automatic ABC-PMC algorithm can be easily implemented and we present several examples demonstrating its benefits in terms of computational efficiency.

Read more
Computation

Adaptive Path Sampling in Metastable Posterior Distributions

The normalizing constant plays an important role in Bayesian computation, and there is a large literature on methods for computing or approximating normalizing constants that cannot be evaluated in closed form. When the normalizing constant varies by orders of magnitude, methods based on importance sampling can require many rounds of tuning. We present an improved approach using adaptive path sampling, iteratively reducing gaps between the base and target. Using this adaptive strategy, we develop two metastable sampling schemes. They are automated in Stan and require little tuning. For a multimodal posterior density, we equip simulated tempering with a continuous temperature. For a funnel-shaped entropic barrier, we adaptively increase mass in bottleneck regions to form an implicit divide-and-conquer. Both approaches empirically perform better than existing methods for sampling from metastable distributions, including higher accuracy and computation efficiency.

Read more
Computation

Adaptive Quantile Computation for Brownian Bridge in Change-Point Analysis

As an example for the fast calculation of distributional parameters of Gaussian processes, we propose a new Monte Carlo algorithm for the computation of quantiles of the supremum norm of weighted Brownian bridges. As it is known, the corresponding distributions arise asymptotically for weighted CUSUM statistics for change-point detection. The new algorithm employs an adaptive (sequential) time discretization for the trajectories of the Brownian bridge. A simulation study shows that the new algorithm by far outperforms the standard approach, which employs a uniform time discretization.

Read more
Computation

Adaptive Schemes for Piecewise Deterministic Monte Carlo Algorithms

The Bouncy Particle sampler (BPS) and the Zig-Zag sampler (ZZS) are continuous time, non-reversible Monte Carlo methods based on piecewise deterministic Markov processes. Experiments show that the speed of convergence of these samplers can be affected by the shape of the target distribution, as for instance in the case of anisotropic targets. We propose an adaptive scheme that iteratively learns all or part of the covariance matrix of the target and takes advantage of the obtained information to modify the underlying process with the aim of increasing the speed of convergence. Moreover, we define an adaptive scheme that automatically tunes the refreshment rate of the BPS or ZZS. We prove ergodicity and a law of large numbers for all the proposed adaptive algorithms. Finally, we show the benefits of the adaptive samplers with several numerical simulations.

Read more
Computation

Adaptive particle-based approximations of the Gibbs posterior for inverse problems

In this work, we adopt a general framework based on the Gibbs posterior to update belief distributions for inverse problems governed by partial differential equations (PDEs). The Gibbs posterior formulation is a generalization of standard Bayesian inference that only relies on a loss function connecting the unknown parameters to the data. It is particularly useful when the true data generating mechanism (or noise distribution) is unknown or difficult to specify. The Gibbs posterior coincides with Bayesian updating when a true likelihood function is known and the loss function corresponds to the negative log-likelihood, yet provides subjective inference in more general settings. We employ a sequential Monte Carlo (SMC) approach to approximate the Gibbs posterior using particles. To manage the computational cost of propagating increasing numbers of particles through the loss function, we employ a recently developed local reduced basis method to build an efficient surrogate loss function that is used in the Gibbs update formula in place of the true loss. We derive error bounds for our approximation and propose an adaptive approach to construct the surrogate model in an efficient manner. We demonstrate the efficiency of our approach through several numerical examples.

Read more

Ready to get started?

Join us today