El misterio de la regresión múltiple: ¿por qué la estimación simultánea de diferentes ecuaciones mejora la eficiencia?

En el campo de la econometría, Arnold Zellner propuso en 1962 el modelo de regresión aparentemente no relacionado (SUR), que es una extensión del modelo de regresión lineal. Este modelo contiene múltiples ecuaciones de regresión, cada una con su propia variable dependiente independiente y posiblemente diferentes variables explicativas exógenas. Aunque el diseño de estas ecuaciones parece ser independiente entre sí, en realidad sus términos de error están relacionados entre sí. Esta situación ha despertado un gran interés entre los econometristas.

De acuerdo con los supuestos del modelo SUR, los términos de error son independientes entre observaciones, pero los términos de error dentro de la misma observación pueden estar correlacionados entre ecuaciones.

Según la teoría de Zellner, cada ecuación del modelo SUR se puede estimar de forma independiente, normalmente utilizando el método de mínimos cuadrados ordinarios (MCO). Sin embargo, este método generalmente no es tan eficiente como el método SUR, que estima utilizando el método de mínimos cuadrados generalizados factibles (FGLS) a través de una matriz de variante-covarianza específica.

En la mayoría de los casos, el método SUR puede mejorar eficazmente la precisión de la estimación, especialmente cuando existe correlación entre los términos de error. Esto permite que el modelo SUR refleje mejor situaciones del mundo real, porque en muchos problemas económicos las variables se influyen entre sí y esta relación de influencia tiende a surgir con el tiempo.

Cuando la matriz de covarianza del término de error es una matriz diagonal conocida, los resultados de la estimación SUR serán los mismos que los resultados de la estimación MCO por ecuaciones.

Esto significa que, en algunos casos específicos, el uso de MCO para una regresión separada también puede dar los mismos resultados que SUR. Por ejemplo, cuando las variables explicativas de cada ecuación son exactamente las mismas, las estimaciones del modelo SUR y los resultados de MCO serán muy consistentes.

Además, la aplicación de los modelos SUR no se limita a unas pocas ecuaciones, sino que también se extiende a sistemas más complejos, como los modelos de ecuaciones simultáneas. En estos casos, las variables explicativas del lado derecho de la ecuación también pueden ser endógenas, lo que ha motivado mayores desarrollos en las técnicas econométricas.

Técnicas de estimación efectivas

Los modelos SUR generalmente se estiman utilizando el método de mínimos cuadrados generalizados factibles (FGLS), que es un método de dos pasos. Primero, realizamos una regresión utilizando el método de mínimos cuadrados ordinarios, a partir del cual los residuos se utilizan para estimar los elementos de la matriz de covarianza. En el segundo paso, utilizamos la matriz de variación para la estimación de mínimos cuadrados generalizados, que puede mejorar efectivamente la precisión de la estimación.

Además del método FGLS, existen otras técnicas de estimación para elegir, incluida la estimación de máxima verosimilitud (ML), así como mínimos cuadrados generalizados iterativos (IGLS) y mínimos cuadrados ordinarios iterativos (IOLS). Cada uno de estos métodos tiene ventajas y desventajas, pero las investigaciones muestran que tienden a producir numéricamente los mismos resultados, lo que permite a los investigadores elegir la técnica adecuada en función de las necesidades reales.

Aplicaciones de la econometría

Con el desarrollo de la econometría, los modelos SUR se utilizan cada vez más en software estadístico. Por ejemplo, el paquete "systemfit" se puede utilizar en lenguaje R para estimar el modelo SUR, en Stata se pueden utilizar las instrucciones "sureg" y "suest" para completar la estimación correspondiente.

El desarrollo de esta serie de tecnologías ha enriquecido enormemente la caja de herramientas de la econometría, permitiendo a los investigadores proporcionar análisis y predicciones más precisos cuando se enfrentan a problemas económicos complejos.

En resumen, el poder del modelo SUR es que puede tener plenamente en cuenta las posibles interacciones entre diferentes ecuaciones de regresión, lo que nos brinda más ventajas al abordar problemas multivariados. Sin embargo, ¿significa esto que utilizar SUR es la mejor opción en todas las situaciones?

Trending Knowledge

El arma oculta de la economía: ¿Qué son los modelos de regresión aparentemente no relacionados y cómo cambian las reglas del juego en el análisis de datos?
En el campo de la economía, los métodos y herramientas para el análisis de datos están en constante evolución, y las regresiones aparentemente no relacionadas (SUR) son una opción que cambia las regla
La inspiración de Arnold Zellner: ¿Cómo surgieron modelos de regresión aparentemente no relacionados?
En el campo de la econometría, Arnold Zelner, el creador del modelo de "Regresión aparentemente no relacionada" (SUR), ha aportado gran importancia al desarrollo del análisis de datos y de los métodos

Responses