International Journal for Numerical and Analytical Methods in Geomechanics | 2019

Two‐dimensional elastoplastic analysis of cylindrical cavity problems in Tresca materials

 
 

Abstract


This paper presents analytical elastic-plastic solutions for static stress loading analysis and quasi-static expansion analysis of a cylindrical cavity in Tresca materials, considering biaxial far-field stresses and shear stresses along the inner cavity wall. The two-dimensional static stress solution is obtained by assuming that the plastic zone is statically determinate and using the complex variable theory in the elastic analysis. A rigorous conformal mapping function is constructed, which predicts that the elastic-plastic boundary is in an elliptic shape under biaxial in situ stresses, and the range of the plastic zone extends with increasing internal shear stresses. The major axis of the elliptical elastic-plastic boundary coincides with the direction of the maximum far-field compression stress. Furthermore, considering the internal shear stresses, an analytical large-strain displacement solution is derived for continuous cavity expansion analysis in a hydrostatic initial stress filed. Based on the derived analytical stress and displacement solutions, the influence of the internal shear stresses on the quasi-static cavity expansion process is studied. It is shown that additional shear stresses could reduce the required normal expansion pressure to a certain degree, which partly explains the great reduction of the axial soil resistance due to rotations in rotating cone penetration tests. In addition, through additionally considering the potential influences of biaxial in situ stresses and shear stresses generated around the borehole during drillings, an improved cavity expansion approach for estimating the maximum allowable mud pressure of horizontal directional drillings (HDDs) in undrained clays is proposed and validated.

Volume 43
Pages 1612-1633
DOI 10.1002/NAG.2925
Language English
Journal International Journal for Numerical and Analytical Methods in Geomechanics

Full Text