arXiv: Applied Physics | 2019

Full energy spectra of interface state densities for n- and p-type MoS2 field-effect transistors

 
 
 
 
 

Abstract


Two-dimensional (2D) layered materials are promising for replacing Si to overcome the scaling limit of recent ~5 nm-length metal-oxide-semiconductor field-effect transistors (MOSFETs). However, the insulator/2D channel interface severely degrades the performance of 2D-based MOSFETs, and the origin of the degradation remains largely unexplored. Here, we present the full energy spectra of the interface state densities (Dit) for both n- and p- MoS2 FETs, based on the comprehensive and systematic studies, i.e., thickness range from monolayer to bulk and various gate stack structures including 2D heterostructure with h-BN as well as typical high-k top-gate structure. For n-MoS2, Dit around the mid gap is drastically reduced to 5*10^11 cm-2eV-1 for the heterostructure FET with h-BN from 5*10^12 cm-2eV-1 for the high-k top-gate MoS2 FET. On the other hand, Dit remains high, ~10^13 cm-2eV-1, even for the heterostructure FET for p-MoS2. The systematic study elucidates that the strain induced externally through the substrate surface roughness and high-k deposition process is the origin for the interface degradation on the conduction band side, while sulfur-vacancy-induced defect-states dominate the interface degradation on the valance band side. The present understanding on the interface properties provides the key to further improving the performance of 2D FETs.

Volume None
Pages None
DOI 10.1002/adfm.201904465
Language English
Journal arXiv: Applied Physics

Full Text