Advanced materials | 2019

A Hybrid Solar Absorber-Electrocatalytic N-Doped Carbon/Alloy/Semiconductor Electrode for Localized Photothermic Electrocatalysis.

 
 
 
 
 

Abstract


Converting and storing intermittent solar energy into stable chemical fuels of high efficiency depend crucially on harvesting excess energy beyond the conventional ultraviolet light spectrum. The means of applying highly efficient solar-thermal conversion on practical electricity-driven water splitting could be a significant stride toward this goal, while some bottlenecks remain unresolved. Herein, photothermic electrocatalytic oxygen and hydrogen evolution reactions are proposed, which bestow a distinctive exothermic activation and electrochemical reactivity in a reconstructed electrolyzer system, and which are poised for efficient renewable energy production. Attributed to the synergistic in situ coupling of the N-doped carbon, metallic alloy and oxides, in view of their broadband light absorption, high electrochemical surface area, and efficient charge transfer attributes, the hybrid photothermal electrocatalytic electrode simultaneously satisfies efficient photon-to-heat conversion and augmented electrochemical catalytic activity. Finally, a system level design of an appropriate photothermally mediated electrolytic cell with close-proximity light-illumination window along with a low-thermal-emittance electrolyte separator that preserve an overall large localized thermal gradient and efficient mass transport is devised. Such a photothermally mediated electrocatalytic system presented here may open up new avenues for the development of solar-thermal energy utilization in other forms.

Volume None
Pages \n e1903605\n
DOI 10.1002/adma.201903605
Language English
Journal Advanced materials

Full Text