Archives of insect biochemistry and physiology | 2019

Antennal transcriptome analysis of the maize weevil Sitophilus zeamais: Identification and tissue expression profiling of candidate odorant-binding protein genes.

 
 
 
 
 
 

Abstract


Our bioassays reviewed that antennae played crucial roles in the responses of maize weevil (Sitophilus zeamais) to food and sex volatiles. In order to identify the maize weevil odorant-binding protein (OBP) genes, we analyzed its antennal transcriptome. In total, 21,587,928 high-quality clean reads were obtained from RNA-seq, 52,206 unigenes were assembled, and 25,744 unigenes showed significant similarity ( E value\u2009<\u200910 -5 ) to known proteins in the NCBI nonredundant protein database. From those unigenes, we identified 41 candidate OBP proteins, which could be categorized into dimeric OBPs subfamily, minus-C OBPs subfamily, and classical OBPs subfamily. Phylogenic analysis indicated that most maize weevil OBPs were closely related to their orthologues in other beetles of the Superfamily Curculionoidea. We further investigated the expression profiles of those candidate OBP genes by quantitative real-time polymerase chain reaction. Twenty-six of forty-one maize weevil OBP genes were highly expressed in the antennae or other parts of the head. The rest were expressed in the legs, wings, or other tested tissues. The antennal transcriptomic data and candidate OBP genes described here provide a basis for the functional studies of the maize weevil chemical perception, which are potential novel targets for pest control strategies.

Volume 101 1
Pages \n e21542\n
DOI 10.1002/arch.21542
Language English
Journal Archives of insect biochemistry and physiology

Full Text