Chemistry (Weinheim an Der Bergstrasse, Germany) | 2021

Conformational Dependence of Triplet Energies in Rotationally Hindered N‐ and S‐Heterocyclic Dimers: New Design and Measurement Rules for High Triplet Energy OLED Host Materials

 
 
 
 
 
 

Abstract


Abstract A series of four heterocyclic dimers has been synthesized, with twisted geometries imposed across the central linking bond by ortho‐alkoxy chains. These include two isomeric bicarbazoles, a bis(dibenzothiophene‐S,S‐dioxide) and a bis(thioxanthene‐S,S‐dioxide). Spectroscopic and electrochemical methods, supported by density functional theory, have given detailed insights into how para‐ vs. meta‐ vs. broken conjugation, and electron‐rich vs. electron‐poor heterocycles impact the HOMO–LUMO gap and singlet and triplet energies. Crucially for applications as OLED hosts, the triplet energy (E T) of these molecules was found to vary significantly between dilute polymer films and neat films, related to conformational demands of the molecules in the solid state. One of the bicarbazole species shows a variation in E T of 0.24\u2005eV in the different media—sufficiently large to “make‐or‐break” an OLED device—with similar discrepancies found between neat films and frozen solution measurements of other previously reported OLED hosts. From consolidated optical and optoelectronic investigations of different host/dopant combinations, we identify that only the lower E T values measured in neat films give a reliable indicator of host/guest compatibility. This work also provides new molecular design rules for obtaining very high E T materials and controlling their HOMO and LUMO energies.

Volume 27
Pages 6545 - 6556
DOI 10.1002/chem.202100036
Language English
Journal Chemistry (Weinheim an Der Bergstrasse, Germany)

Full Text