ELECTROPHORESIS | 2021

A novel ultralow conductivity electromanipulation buffer improves cell viability and enhances dielectrophoretic consistency

 
 
 
 
 

Abstract


Cell separation has become a critical diagnostic, research, and treatment tool for personalized medicine. Despite significant advances in cell separation, most widely used applications require the use of multiple, expensive antibodies to known markers in order to identify subpopulations of cells for separation. Dielectrophoresis (DEP) provides a biophysical separation technique that can target cell subpopulations based on phenotype without labels and return native cells for downstream analysis. One challenge in employing any DEP device is the sample being separated must be transferred into an ultralow conductivity medium, which can be detrimental in retaining cells’ native phenotypes for separation. Here, we measured properties of traditional DEP reagents and determined that after just 1–2 h of exposure and subsequent culture, cells’ viability was significantly reduced below 50%. We developed and tested a novel buffer (Cyto Buffer) that achieved 6 weeks of stable shelf‐life and demonstrated significantly improved viability and physiological properties. We then determined the impact of Cyto Buffer on cells’ dielectric properties and morphology and found that cells retained properties more similar to that of their native media. Finally, we vetted Cyto Buffer s usability on a cell separation platform (Cyto R1) to determine combined efficacy for cell separations. Here, more than 80% of cells from different cell lines were recovered and were determined to be >70% viable following exposure to Cyto Buffer, flow stimulation, electromanipulation, and downstream collection and growth. The developed buffer demonstrated improved opportunities for electrical cell manipulation, enrichment, and recovery for next generation cell separations.

Volume 42
Pages None
DOI 10.1002/elps.202000324
Language English
Journal ELECTROPHORESIS

Full Text