Environmental toxicology and chemistry | 2019

A Multitracer Approach to Quantifying Resource Utilization Strategies in Lake Trout Populations in Lake Huron.

 
 
 

Abstract


Lake ecosystems are threatened by an array of stressors. An understanding of how food webs and bioaccumulation dynamics respond to these challenges requires the quantification of energy flow. We present a combined, multitracer approach using both polychlorinated biphenyls (PCBs) and stable isotopes to trace energy flow, and to quantify how lake trout feeding strategies have adapted to changes in food web structure in 3 basins of Lake Huron (ON, Canada). This combined tracer approach allows the quantification of dietary proportions (using stable isotopes), which are then integrated using a novel PCB tracer approach that employs knowledge of PCB bioaccumulation pathways, to estimate consumption and quantify energy flow between age cohorts of individual fish across Lake Huron. We observed basin-specific differences in ultimate energy sources for lake trout, with Georgian Bay lake trout deriving almost 70% of their energy from benthic resources compared with 16 and 33% for Main Basin and North Channel lake trout, respectively. These differences in resource utilization are further magnified when they are contrasted with age. The dependency on pelagic energy sources in the Main Basin and North Channel suggests that these populations will be the most negatively affected by the ongoing trophic collapse in Lake Huron. Our study demonstrates the utility of a multitracer approach to quantify the consequences of food web adaptations to changes in aquatic ecosystems. Environ Toxicol Chem 2019;38:1245-1255. © 2019 SETAC.

Volume 38 6
Pages \n 1245-1255\n
DOI 10.1002/etc.4414
Language English
Journal Environmental toxicology and chemistry

Full Text