Glia | 2021

Single‐cell transcriptomic profiling of satellite glial cells in stellate ganglia reveals developmental and functional axial dynamics

 
 
 
 
 
 

Abstract


Stellate ganglion neurons, important mediators of cardiopulmonary neurotransmission, are surrounded by satellite glial cells (SGCs), which are essential for the function, maintenance, and development of neurons. However, it remains unknown whether SGCs in adult sympathetic ganglia exhibit any functional diversity, and what role this plays in modulating neurotransmission. We performed single‐cell RNA sequencing of mouse stellate ganglia (n = 8 animals), focusing on SGCs (n = 11,595 cells). SGCs were identified by high expression of glial‐specific transcripts, S100b and Fabp7. Microglia and Schwann cells were identified by expression of C1qa/C1qb/C1qc and Ncmap/Drp2, respectively, and excluded from further analysis. Dimensionality reduction and clustering of SGCs revealed six distinct transcriptomic subtypes, one of which was characterized the expression of pro‐inflammatory markers and excluded from further analyses. The transcriptomic profiles and corresponding biochemical pathways of the remaining subtypes were analyzed and compared with published astrocytic transcriptomes. This revealed gradual shifts of developmental and functional pathways across the subtypes, originating from an immature and pluripotent subpopulation into two mature populations of SGCs, characterized by upregulated functional pathways such as cholesterol metabolism. As SGCs aged, these functional pathways were downregulated while genes and pathways associated with cellular stress responses were upregulated. These findings were confirmed and furthered by an unbiased pseudo‐time analysis, which revealed two distinct trajectories involving the five subtypes that were studied. These findings demonstrate that SGCs in mouse stellate ganglia exhibit transcriptomic heterogeneity along maturation or differentiation axes. These subpopulations and their unique biochemical properties suggest dynamic physiological adaptations that modulate neuronal function.

Volume 69
Pages 1281 - 1291
DOI 10.1002/glia.23965
Language English
Journal Glia

Full Text