Journal of Biochemical and Molecular Toxicology | 2019

Inhibition of activated factor X; a new pathway in ameliorating carbon tetrachloride–induced liver fibrosis in rats

 
 
 
 

Abstract


Activated factor X has a central role in the coagulation activation and also contributes to chronic inflammation and tissue fibrosis. In this study, rivaroxaban, a direct factor X inhibitor, attenuates liver fibrosis induced by carbon tetrachloride (CCl4). Male rats were randomly allocated into three groups: a control group, CCl 4 fibrotic group, and CCl 4+rivaroxaban (5\u2009mg/kg) group. Liver fibrosis was induced by subcutaneous injection of CCl 4 twice a week for 6 weeks. Rivaroxaban significantly restored the biochemical parameter including inflammatory and fibrosis markers with histopathological evidence using routine and Masson trichrome staining. It reduced also the expression of tissue factor, fibrin, transforming growth factor and α‐smooth muscle actin in the liver tissues. This concludes that rivaroxaban attenuates liver injury caused by CCl 4, at least in part by inhibiting coagulation and proinflammatory activation. In conclusion, rivaroxaban may be used for the management of liver fibrosis.

Volume 33
Pages None
DOI 10.1002/jbt.22287
Language English
Journal Journal of Biochemical and Molecular Toxicology

Full Text