Journal of cellular physiology | 2019

Arsenic induces fibrogenic changes in human kidney epithelial cells potentially through epigenetic alterations in DNA methylation.

 
 

Abstract


Arsenic contamination is a significant public health issue, and kidney is one of the target organ for arsenic-induced adverse effects. Renal fibrosis is a well-known pathological stage frequently observed in progressive chronic kidney disease (CKD). Epidemiological studies implicate arsenic exposure to CKD, but the role of arsenic in kidney fibrosis and the underlying mechanism is still unclear. It is in this context that the current study evaluated the effects of long-term arsenic exposure on the cellular response in morphology, and marker genes expression with respect to fibrosis using human kidney 2 (HK-2) epithelial cells. Results of this study revealed that in addition to increased growth, HK-2 cells underwent phenotypic, biochemical and molecular changes indicative of epithelial-mesenchymal transition (EMT) in response to the exposure to arsenic. Most importantly, the arsenic-exposed cells acquired the pathogenic features of fibrosis as supported by increased expression of markers for fibrosis, such as Collagen I, Fibronectin, transforming growth factor β, and α-smooth muscle actin. Upregulation of fibrosis associated signaling molecules such as tissue inhibitor of metalloproteinases-3 and matrix metalloproteinase-2 as well as activation of AKT was also observed. Additionally, the expression of epigenetic genes (DNA methyltransferases 3a and 3b; methyl-CpG binding domain 4) was increased in arsenic-exposed cells. Treatment with DNA methylation inhibitor 5-Aza-2 -dC reversed the EMT properties and restored the level of phospho-AKT. Together, these data for the first time suggest that long-term exposure to arsenic can increase the risk of kidney fibrosis. Additionally, our data suggest that the arsenic-induced fibrotic changes are, at least in part, mediated by DNA methylation and therefore potentially can be reversed by epigenetic therapeutics.

Volume 234 4
Pages \n 4713-4725\n
DOI 10.1002/jcp.27244
Language English
Journal Journal of cellular physiology

Full Text