Small | 2019

Threshold Voltage Control of Multilayered MoS2 Field-Effect Transistors via Octadecyltrichlorosilane and their Applications to Active Matrixed Quantum Dot Displays Driven by Enhancement-Mode Logic Gates.

 
 
 
 
 
 
 
 
 
 
 
 
 

Abstract


In recent past, for next-generation device opportunities such as sub-10 nm channel field-effect transistors (FETs), tunneling FETs, and high-end display backplanes, tremendous research on multilayered molybdenum disulfide (MoS2 ) among transition metal dichalcogenides has been actively performed. However, nonavailability on a matured threshold voltage control scheme, like a substitutional doping in Si technology, has been plagued for the prosperity of 2D materials in electronics. Herein, an adjustment scheme for threshold voltage of MoS2 FETs by using self-assembled monolayer treatment via octadecyltrichlorosilane is proposed and demonstrated to show MoS2 FETs in an enhancement mode with preservation of electrical parameters such as field-effect mobility, subthreshold swing, and current on-off ratio. Furthermore, the mechanisms for threshold voltage adjustment are systematically studied by using atomic force microscopy, Raman, temperature-dependent electrical characterization, etc. For validation of effects of threshold voltage engineering on MoS2 FETs, full swing inverters, comprising enhancement mode drivers and depletion mode loads are perfectly demonstrated with a maximum gain of 18.2 and a noise margin of ≈45% of 1/2 VDD . More impressively, quantum dot light-emitting diodes, driven by enhancement mode MoS2 FETs, stably demonstrate 120 cd m-2 at the gate-to-source voltage of 5 V, exhibiting promising opportunities for future display application.

Volume 15 7
Pages \n e1803852\n
DOI 10.1002/smll.201803852
Language English
Journal Small

Full Text