Small | 2021

Hierarchical Triple-Shelled MnCo2 O4 Hollow Microspheres as High-Performance Anode Materials for Potassium-Ion Batteries.

 
 
 
 
 
 
 
 

Abstract


Metal oxide anode materials generally possess high theoretical capacities. However, their further development in potassium-ion batteries (KIBs) is limited by self-aggregation and large volume fluctuations during charge/discharge processes. Herein, hierarchical MnCo2 O4 hollow microspheres (ts-MCO HSs) with three porous shells that consist of aggregated primary nanoparticles are fabricated as anode materials of KIBs. The porous shells are in favor of reducing the diffusion path of K-ions and electrons, and thus the rate performance can be enhanced. The unique triple-shelled hollow structure is believed to provide sufficient contact between electrolyte and metal oxides, possess additional active storage sites for K-ions, and buffer the volume change during K-ions insertion/extraction. A high specific capacity of 243\xa0mA\xa0h\xa0g-1 at 100\xa0mA\xa0g-1 in the 2nd cycle and a highly improved rate performance of 153\xa0mA\xa0h\xa0g-1 at 1\xa0A\xa0g-1 are delivered when cycled between 0.01 and 3.0\xa0V. In addition, the transformation of substances during charging/discharging processes are intuitively demonstrated by the in situ X-ray diffraction strategy for the first time, which further proves that the unique structure of ts-MCO HSs with three porous shells can significantly enhance the potassium ions storage performance.

Volume None
Pages \n e2007597\n
DOI 10.1002/smll.202007597
Language English
Journal Small

Full Text