Small | 2021

The Synthesis of Protein-Encapsulated Ceria Nanorods for Visible-Light Driven Hydrogen Production and Carbon Dioxide Reduction.

 
 
 

Abstract


1D rare earth-based nanomaterials have attracted significant attention due to their excellent photo/electro-catalytic performance. The corresponding challenge is how to synthesize shape and size-controlled nanostructures in an easy scale-up way. Herein, the authors present a facile one-step strategy to design 1D multifunctional protein-encapsulated cerium oxide nanorods (PCNRs) by utilizing bovine serum albumin as an efficient biotemplate. Remarkably, the PCNRs exhibit high chemical and interfacial adhesion stability with intriguing properties, resulting in an exceptionally high activity towards H2 evolution and CO2 reduction. The photocatalytic activity of PCNRs to produce H2 is about 10 times higher than conventional CeO2 nanorods. The incorporation of rhodamine B into the PCNRs brings unprecedentedly high photocatalytic H2 evolution rate being 123 times higher than that of conventional CeO2 nanorods. Further the presence of the -NH2 groups on the PCNRs facilitated the adsorption and activation of CO2 and efficiently suppressed the proton reduction, and as a result, the PCNRs photocatalyst is highly active in converting CO2 to CO and CH4 , with the evolution rates being 50 and 83 times higher than those of conventional CeO2 nanorods, respectively. Achieving such efficient photocatalyst is a critical step toward practical production of high-value renewable fuels using solar energy.

Volume None
Pages \n e2103422\n
DOI 10.1002/smll.202103422
Language English
Journal Small

Full Text