Small | 2021

Layer-Tunable Nonlinear Optical Characteristics and Photocarrier Dynamics of 2D PdSe2 in Broadband Spectra.

 
 
 
 
 
 
 
 

Abstract


Layered 2D transition metal dichalcogenides (TMDCs) exhibited fascinating nonlinear optical (NLO) properties for constructing varied promising optoelectronics. However, exploring the desired 2D materials with both superior nonlinear absorption and ultrafast response in broadband spectra remain the key challenges to harvest their greatest potential. Here, based on synthesizing 2D PdSe2 films with the controlled layer number, the authors systematically demonstrated the broadband giant NLO performance and ultrafast excited carrier dynamics of this emerging material under femtosecond visible-to-near-infrared laser-pulse excitation (400-1550\xa0nm). Layer-dependent and wavelength-dependent evolution of optical bandgap, nonlinear absorption, and photocarrier dynamics in the obtained 2D PdSe2 are clearly revealed. Specially, the transition from semiconducting to semimetallic PdSe2 induced dramatic changes of their interband absorption-relaxation process. This work makes 2D PdSe2 more competitive for future ultrafast photonics and also opens up a new avenue for the optical performance optimization of various 2D materials by rational design of these materials.

Volume None
Pages \n e2103938\n
DOI 10.1002/smll.202103938
Language English
Journal Small

Full Text