Yeast | 2019

Bioinformatic characterization of the extracellular lipases from Kluyveromyces marxianus

 
 
 
 
 

Abstract


Lipases are hydrolytic enzymes that break the ester bonds of triglycerides, generating free fatty acids and glycerol. Extracellular lipase activity has been reported for the nonconventional yeast Kluyveromyces marxianus, grown in olive oil as a substrate, and the presence of at least eight putative lipases has been detected in its genome. However, to date, there is no experimental evidence on the physiological role of the putative lipases nor their structural and catalytic properties. In this study, a bioinformatic analysis of the genes of the putative lipases from K. marxianus L‐2029 was performed, particularly identifying and characterizing the extracellular expected enzymes, due to their biotechnological relevance. The amino acid sequence of 10 putative lipases, obtained by in silico translation, ranged between 389 and 773 amino acids. Two of the analysed putative proteins showed a signal peptide, 25 and 33 amino acids long for KmYJR107Wp and KmLIP3p, and a molecular weight of 44.53 and 58.23 kDa, respectively. The amino acid alignment of KmLIP3p and KmYJR107Wp with the crystallized lipases from a patatin and the YlLip2 lipase from Yarrowia lipolytica, respectively, revealed the presence of the hydrolase characteristic motifs. From the 3D models of putative extracellular K. marxianus L‐2029 lipases, the conserved pentapeptide of each was determined, being GTSMG for KmLIP3p and GHSLG for KmYJR107Wp; besides, the genes of these two enzymes (LIP3 and YJR107W) are apparently regulated by oleate response elements. The phylogenetic analysis of all K. marxianus lipases revealed evolutionary affinities with lipases from abH15.03, abH23.01, and abH23.02 families.

Volume 37
Pages 149 - 162
DOI 10.1002/yea.3449
Language English
Journal Yeast

Full Text