Methods in molecular biology | 2021

Generation of Human Neurons by microRNA-Mediated Direct Conversion of Dermal Fibroblasts.

 
 
 
 
 
 

Abstract


MicroRNAs (miRNAs), miR-9/9*, and miR-124 (miR-9/9*-124) display fate-reprogramming activities when ectopically expressed in human fibroblasts by erasing the fibroblast identity and evoking a pan-neuronal state. In contrast to induced pluripotent stem cell-derived neurons, miRNA-induced neurons (miNs) retain the biological age of the starting fibroblasts through direct fate conversion and thus provide a human neuron-based platform to study cellular properties inherent in aged neurons and model adult-onset neurodegenerative disorders using patient-derived cells. Furthermore, expression of neuronal subtype-specific transcription factors in conjunction with miR-9/9*-124 guides the miNs to distinct neuronal fates, a feature critical for modeling disorders that affect specific neuronal subtypes. Here, we describe the miR-9/9*-124-based neuronal reprogramming protocols for the generation of several disease-relevant neuronal subtypes: striatal medium spiny neurons, cortical neurons, and spinal cord motor neurons.

Volume 2239
Pages \n 77-100\n
DOI 10.1007/978-1-0716-1084-8_6
Language English
Journal Methods in molecular biology

Full Text