Archive | 2019

Novel Synchronous Brain Computer Interface Based on 2-D EEG Local Binary Patterning

 
 

Abstract


This paper proposes the design and the validation through in-vivo measurements, of an innovative machine learning (ML) approach for a synchronous Brain Computer Interface (BCI). The here-proposed system analyzes EEG signals from 8 wireless smart electrodes, placed in motor, and sensory-motor cortex area. For its functioning, the BCI exploits a specific brain activity patterns (BAP) elicited during the measurements by using clinical-inspired stimulation protocol that is suitable for the evocation of the Movement-Related Cortical Potentials (MRCPs). The proposed BCI analyzes the EEGs through symbolization-based algorithm: the Local Binary Patterning, which – due to its end-to-end binary nature - strongly reduces the computational complexity of the features extraction (FE) and real-time classification stages.

Volume None
Pages 192-210
DOI 10.1007/978-3-030-29513-4_14
Language English
Journal None

Full Text