Physiological, Molecular, and Genetic Perspectives of Wheat Improvement | 2021

Physiological, Molecular, and Genetic Perspectives of Wheat Improvement

 
 
 

Abstract


There is no simple solution to sustainably feeding a global population as large as 9.6 billion by 2050 while we focus to diminish the emission of greenhouse gases (GHG) and other crop productivity constraints that cumulatively can penalize outputs. Moreover, strong drifts in global climate change have already been recorded, indicative that prospects of further deterioration are inevitable. Sustaining future food security poses a serious challenge in the face of mounting population, climatic instability, and emergence of new crop uses such as biofuels. Bread wheat (Triticum aestivum L., AABBDD) is a major source of calories and protein, providing 20% of the total calories in human diet, and the importance to increase wheat production is widely acknowledged. It is unequivocally recognized as the major conduit toward food security. Nevertheless, yields of all major cereals have stagnated at farm levels with wheat showing the lowest rate of increase due to the emergence of various biotic and abiotic stress constraints. With almost no opportunity to expand agriculture on existing land, increasing genetic gains for grain yield and associated traits could significantly influence the number of people at hunger risk. However, yield is a complex trait, and obtaining higher yields under any situation is unlikely to be addressed with a single or uniform approach. While improvements in agronomy could boost the yield potential in some regions, yield gains in many other areas could be achieved with genetic improvements only. We argue that achieving increased crop adaptation is likely to be the key component of future food security, and this must be well integrated into climate changerelated issues and sustainable agriculture. Public investments in agri-food infrastructure and adaptation of innovative farming practices will be crucial in developing resilient crops. Development of crops with a wide genetic base and adaptation to limited agricultural inputs are warranted. Thus dietary preferences could significantly reduce the emissions of GHG and are likely be necessary components of transition toward a low-carbon society. Further, application of the recently evolved high-throughput genotyping and phenomic tools in conN. Ali (*) Department of Botany, Hazara University, Mansehra, KP, Pakistan A. Mujeeb-Kazi Texas A&M University, College Station, TX, USA

Volume None
Pages None
DOI 10.1007/978-3-030-59577-7
Language English
Journal Physiological, Molecular, and Genetic Perspectives of Wheat Improvement

Full Text