Archive | 2019

A Generic ROS Based System for Rapid Development and Testing of Algorithms for Autonomous Ground and Aerial Vehicles

 
 
 
 

Abstract


This chapter presents a Robot Operating System (ROS) framework for development and testing of autonomous control functions. The developed system offers the user significantly reduced development times over prior methods. Previously, development of a new function from theory to flight test required a range of different test systems which offered minimal integration; this would have required great effort and expense. A generic system has been developed that can operate a large range of robotic systems. By design, a developed controller can be taken from numerical simulation, through Software/Hardware in the loop simulation to flight test, with no adjustment of code required. The flexibility and power of ROS was combined with the Robotic Systems toolbox from MATLAB/Simulink, Linux embedded systems and a commercially available autopilot. This affords the user a low cost, simple, highly flexible and reconfigurable system. Furthermore, by separating experimental controllers from the autopilot at the hardware level, flight safety is maintained as manual override is available at all times, regardless of faults in any experimental systems. This chapter details the system and demonstrates the functionality with two case studies.

Volume None
Pages 113-153
DOI 10.1007/978-3-319-91590-6_4
Language English
Journal None

Full Text