Structural and Multidisciplinary Optimization | 2021

Robust design optimization under dependent random variables by a generalized polynomial chaos expansion

 
 

Abstract


New computational methods are proposed for robust design optimization (RDO) of complex engineering systems subject to input random variables with arbitrary, dependent probability distributions. The methods are built on a generalized polynomial chaos expansion (GPCE) for determining the second-moment statistics of a general output function of dependent input random variables, an innovative coupling between GPCE and score functions for calculating the second-moment sensitivities with respect to the design variables, and a standard gradient-based optimization algorithm, establishing direct GPCE, single-step GPCE, and multi-point single-step GPCE design processes. New analytical formulae are unveiled for design sensitivity analysis that is synchronously performed with statistical moment analysis. Numerical results confirm that the proposed methods yield not only accurate but also computationally efficient optimal solutions of several mathematical and simple RDO problems. Finally, the success of conducting stochastic shape optimization of a steering knuckle demonstrates the power of the multi-point single-step GPCE method in solving industrial-scale engineering problems.

Volume None
Pages 1-33
DOI 10.1007/S00158-020-02820-Z
Language English
Journal Structural and Multidisciplinary Optimization

Full Text