Shock Waves | 2021

In situ nozzle reservoir thermometry by laser-induced grating spectroscopy in the HELM free-piston reflected shock tunnel

 
 
 

Abstract


Experimental determination of test gas caloric quantities in high-enthalpy ground testing is impeded by excessive pressure and temperature levels as well as minimum test timescales of short-duration facilities. Yet, accurate knowledge of test gas conditions and stagnation enthalpy prior to nozzle expansion is crucial for a valid comparison of experimental data with numerical results. To contribute to a more accurate quantification of nozzle inlet conditions, an experimental study on non-intrusive in situ measurements of the post-reflected shock wave stagnation temperature in a large-scale free-piston reflected shock tunnel is carried out. A series of 20 single-shot temperature measurements by resonant homodyne laser-induced grating spectroscopy (LIGS) is presented for three low-/medium-enthalpy conditions (1.2–2.1\xa0MJ/kg) at stagnation temperatures 1100–1900\xa0K behind the reflected shock wave. Prior limiting factors resulting from impulse facility recoil and restricted optical access to the high-pressure nozzle reservoir are solved, and advancement of the optical set-up is detailed. Measurements in air agree with theoretical calculations to within 1–15%, by trend reflecting greater temperatures than full thermo-chemical equilibrium and lesser temperatures than predicted by ideal gas shock jump relations. For stagnation pressures in the range 9–22\xa0MPa, limited influence due to finite-rate vibrational excitation is conceivable. LIGS is demonstrated to facilitate in situ measurements of stagnation temperature within full-range ground test facilities by superior robustness under high-pressure conditions and to be a useful complement of established optical diagnostics for hypersonic flows.

Volume None
Pages 1-20
DOI 10.1007/S00193-020-00982-9
Language English
Journal Shock Waves

Full Text