Journal of Plant Growth Regulation | 2021

Insights into the Role of Gasotransmitters Mediating Salt Stress Responses in Plants

 
 
 
 

Abstract


Salinity stress is one of the most significant global issues that negatively affect plant growth and development. Modern agricultural practices have expanded the destructive effects of salinity stress, affecting plants through immediate osmotic stress, followed by a slow onset of ionic or hyper-osmotic stress. Plants alteration and resistance to salinity stress involve complex physiological, biochemical, and molecular systems to maintain homeostasis. As of late, the investigation of gaseous molecules in plants has attained much consideration, particularly for abiotic stress. Abiotic stresses generally initiate gasotransmitter (GT) generation in plants. In the interim, these GTs enhance the accumulation and activities of few antioxidant molecules, check the destructiveness of reactive oxygen species (ROS), and improve plant resilience under different stress conditions. The current review presented the role of gaseous molecules in plants under salinity stress, which include nitric oxide (·NO), hydrogen sulfide (H2S), hydrogen gas (H2), carbon monoxide (CO), methane (CH4), and the only gaseous phytohormone ethylene. Further, we highlighted the underlying molecular mechanisms of the gasotransmitter signaling and cross-talks in salinity stress. Also, we presented a general update on the inclusion of GT in salt stress response, including the research gaps and its applications in the advancement of salinity-resistant plants.

Volume None
Pages 1-17
DOI 10.1007/S00344-020-10293-Z
Language English
Journal Journal of Plant Growth Regulation

Full Text