Rock Mechanics and Rock Engineering | 2019

The Microwave-Induced Fracturing of Hard Rock

 
 
 
 

Abstract


A new, high-efficiency technology for fracturing and breaking rocks is required. Due to various advantages including high efficiency, energy-saving, and having no secondary pollution, the technology of microwave-induced fracturing of hard rock has been considered as a potential method for rock fracturing and breaking. Aiming at the realisation of two engineering applications: microwave-assisted mechanical rock breaking and stress release from rock masses in deep underground engineering works to prevent geological disasters caused by high-stress concentrations such as rockbursts, a novel (open-type) microwave-induced fracturing apparatus (OMWFA) for fracturing hard rocks was developed. On this basis, the two modes of microwave-induced subsurface fracturing and microwave-induced borehole fracturing of hard rocks were proposed. Due to removal of the restraint of the microwave cavity, OMWFA can be used to fracture large-size rock samples and engineering-scale rock masses. Using the apparatus, the fracturing effects of the two fracturing modes on different dimensions of cuboidal basalt samples were investigated. By combining the microwave-induced fracturing apparatus with a press machine to explore the influence of unidirectional stress on the fracturing effect of microwave treatment on basalt. Moreover, field tests were carried out on rock masses encountered in underground engineering works at Baihetan Hydropower Station in Sichuan Province, China, and the fracturing effects were evaluated by applying a digital borehole televiewer and conducting acoustic wave testing. The results show that the apparatus had favourable fracturing effects on the subsurface and borehole samples of basalt. When no stress was applied, the cracks radially expanded from the approximate centre of the radiant surface and unidirectional stress promoted fracturing. The number and depth of cracks increased with prolonged microwave exposure. After microwave treatment, the P-wave velocity of the samples declined, and the longer the microwave exposure, the more significant the reduction in P-wave velocity was. The results of field test reveal that borehole fracturing can exhibit a favourable effect around boreholes. The sound velocity around the borehole and between the boreholes both declined to some extent. Microwave-induced hard rock fracturing offers guiding significance to those exploring and developing new rock breaking and tunnelling methods, and generally enhances construction safety in deep underground engineering works.

Volume None
Pages 1-16
DOI 10.1007/S00603-019-01790-Z
Language English
Journal Rock Mechanics and Rock Engineering

Full Text