Archive | 2021

Biodegradable foaming material of poly (butylene adipate-co-terephthalate) (PBAT)/poly (propylene carbonate) (PPC)

 
 
 
 
 
 
 
 
 

Abstract


A biodegradable blend foaming material of poly (butylene adipate-co-terephthalate) (PBAT)/poly (propylene carbonate) (PPC) was successfully prepared by chemical foaming agent and screw extrusion method. First, PBAT was modified by bis(tert-butyl dioxy isopropyl) benzene (BIBP) for chain extension, and then the extended PBAT (E-PBAT) was foamed with PPC using a twin (single) screw extruder. By analyzing the properties of the blends, we found that Young s modulus increased from 58.8 MPa of E-PBAT to 244.7 MPa of E-PBAT/PPC50/50. The viscosity of the polymer has a critical influence on the formation of cells. Compared with neat PBAT (N-PBAT), the viscosity of E-PBAT increased by 3396 Pa/s and E-PBAT/PPC 50/50 increased by 8836 Pa/s. Meanwhile, the dynamic mechanical analysis (DMA) results showed that the storage modulus (E ) at room temperature increased from 538 MPa to 1650 MPa. The various phase morphologies (“sea-island”, “quasi-co-continuous” and “co-continuous”) and crystallinity of the blends affected the spread velocity of gas and further affected the foaming morphology in E-PBAT/PPC foam. Therefore, through the analysis of phase morphology and foaming mechanism, we concluded that the E-PBAT/PPC70/30 component has both excellent strength and the best foaming performance.

Volume None
Pages None
DOI 10.1007/S10118-021-2644-6
Language English
Journal None

Full Text