Wirel. Pers. Commun. | 2021

Distributed Temporal Data Prediction Model for Wireless Sensor Network

 
 

Abstract


Sensor networks are critical for building smart environments for monitoring various physical and environmental conditions. Several automated tasks involving continuous and critical practically becomes infeasible for humans to perform with precision. Therefore, wireless sensor networks have emerged as the next-generation technology to permeate the technological upgradations into our daily activities. Such intelligent networks, embedded with sensing expertise, however, are severely energy-constrained. Sensor networks have to process and transmit large volumes of data from sensors to sink or base station, requiring a lot of energy consumption. Since energy is a critical resource in the sensor network to drive all its basic functioning, hence, it needs to be efficiently utilized for elongating network lifetime. This makes energy conservation primarily significant in sensor network design, especially at the sensor node level. Our research proposes an On-balance volume indicator-based Data Prediction (ODP) model for predicting the temperature in the sensor network. Our proposed model can be used to predict temperature with a permissible error of tolerance. This helps in reducing excessive power consumption expended in redundant transmissions, thereby increasing the network lifetime. The proposed data prediction model is compared with existing benchmark time series prediction models, namely Linear Regression (LR) and Auto-Regressive Integrated Moving Average (ARIMA). Experimental outcomes endorsed that our proposed prediction model outperformed the existing counterparts in terms of prediction accuracy and reduction in the number of transmissions in clustered architecture.

Volume 119
Pages 3699-3717
DOI 10.1007/S11277-021-08427-X
Language English
Journal Wirel. Pers. Commun.

Full Text