KSCE Journal of Civil Engineering | 2019

Seismic Behavior of Low-rise Concrete Shear Wall with Single Layer of Web Reinforcement and Inclined Rebars: Restoring Force Model

 
 
 
 
 

Abstract


In order to study the restoring force model of low-rise concrete shear wall with single layer of web reinforcement and inclined rebars, a series of specimens were investigated by quasi-static tests. Based on the fitting of experimental data and theoretical analysis, the restoring force model considering four characteristic points (crack point, yield point, peak point and failure point) and degradation of unloading stiffness was established. The hysteretic rule of restoring force model was determined by analyzing characteristic of hysteresis curve for cyclic loading tests. The results show that skeleton curves and hysteresis curves calculated by the restoring force model are in good agreement with the test curves, which can provide reference for the elastic-plastic dynamic analysis of low-rise concrete shear walls with single layer of web reinforcements and inclined rebars. Shaking table tests of two low-rise concrete shear walls were also conducted to investigate dynamic performance and the seismic damage mechanism of low-rise concrete shear wall with single layer of web reinforcement and inclined rebars. Research on dynamic nonlinear simplified model of SAP2000 shows that the proposed restoring force model can be used to analyze the elastic and elastic-plastic dynamic response for the low-rise concrete shear wall with single layer of web reinforcement and inclined rebars.

Volume 23
Pages 1302-1319
DOI 10.1007/S12205-019-1264-Y
Language English
Journal KSCE Journal of Civil Engineering

Full Text