Journal of The Institution of Engineers : Series A | 2021

Resistance to Grinding and Cement Paste Performance of Blends of Clinker, Limestone and Gypsum

 
 
 
 

Abstract


Grinding of finished cement is performed in a single stage, intergrinding materials with very different grindabilities. This intergrinding process has many different interactions among the different components of the finished cement. In a context of developing more sustainable and less energy intensive processes, it is important to understand the contribution of the individual components of cement mixtures to the overall energy consumption. A\xa0better understanding of the changes in resistance to grinding as a function of the mixture composition can aid to improve process throughput and efficiency. Therefore, understanding the relationship of the\xa0resistance to grinding of the cement components to the overall resistance when intergrinding is essential to optimize and reduce the energy consumption of these processes. Herein, we evaluate experimentally the interactions among clinker, limestone and gypsum during the final grinding stage in Portland cement production. We present a simple, yet rigorous, method that enables the determination of the individual grinding contributions to the intergrinding process. By using Rittinger’s KR parameter, our method is able to predict the contribution of the individual components even for blends with particle sizes below 100\xa0µm. We used this model as the input for a nonlinear optimization that allowed for the identification of an optimum region of composition for Portland cement pastes, including restrictions to the heat of hydration and compressive strength development. The developed models can be easily adapted to aid in the formulation of cement blends with different characteristics to the raw materials used in this study.

Volume None
Pages 1-9
DOI 10.1007/S40030-021-00528-X
Language English
Journal Journal of The Institution of Engineers : Series A

Full Text