Archive | 2021

Designing a long short-term network for short-term forecasting of global horizontal irradiance

 
 
 
 
 
 
 

Abstract


Long short-term memory (LSTM) models based on specialized deep neural network-based architecture have emerged as an important model for forecasting time-series. However, the literature does not provide clear guidelines for design choices, which affect forecasting performance. Such choices include the need for pre-processing techniques such as deseasonalization, ordering of the input data, network size, batch size, and forecasting horizon. We detail this in the context of short-term forecasting of global horizontal irradiance, an accepted proxy for solar energy. Particularly, short-term forecasting is critical because the cloud conditions change at a sub-hourly having large impacts on incident solar radiation. We conduct an empirical investigation based on data from three solar stations from two climatic zones of India over two seasons. From an application perspective, it may be noted that despite the thrust given to solar energy generation in India, the literature contains few instances of robust studies across climatic zones and seasons. The model thus obtained subsequently outperformed three recent benchmark methods based on random forest, recurrent neural network, and LSTM, respectively, in terms of forecasting accuracy. Our findings underscore the importance of considering the temporal order of the data, lack of any discernible benefit from data pre-processing, the effect of making the LSTM model stateful. It is also found that the number of nodes in an LSTM network, as well as batch size, is influenced by the variability of the input data.

Volume 3
Pages 1-15
DOI 10.1007/S42452-021-04421-X
Language English
Journal None

Full Text